Cho tam giác ABC, vẽ điểm M là trung điểm cuarBC. Trên tia đối của tia MA lấy diểm D sao cho MA=MD
a) Chừng minh tam giác ABM=tam giác DCM
b)Kẻ BE\(\perp\)AM,CF\(\perp\)DM. Chứng minh: M là trung điểm của EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình làm câu 1 trước, vừa làm vừa nêu hướng dẫn giải vì các câu sau làm tương tự.
Bước 1: Xét tam giác, lấy bình phương của cạnh lớn nhất.
Xét \(\Delta ABC\)có \(AC^2=\left(\sqrt{5}\right)^2=5\)
Kế tiếp ta xét tổng các bình phương của hai cạnh còn lại:
Lại có \(AB^2+BC^2=1^2+2^2=1+4=5\)
Cuối cùng, xét xem kết quả của 2 phép tính trên có bằng nhau hay không. Theo định lý Pytago đảo, nếu binh phương cạnh lớn nhất mà bằng tổng các bình phương 2 cạnh còn lại thì tam giác đó vuông. (tại đỉnh đối diện với cạnh lớn nhất), nếu không bằng thì không phải tam giác vuông.
\(\Rightarrow AC^2=AB^2+BC^2\left(=5\right)\)
\(\Rightarrow\Delta ABC\)vuông tại B


Ta có:
\(x+2y-\left(x+y\right)=-2\)
\(\Rightarrow\)\(x+2y-x-y=-2\)
\(\Rightarrow\)\(\left(x-x\right)+\left(2y-y\right)=-2\)
\(\Rightarrow\)\(\hept{\begin{cases}y=-2\\x\in R\end{cases}}\)
Vậy...