K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2024

Lời giải:

Chiều rộng thửa ruộng:

$200\times \frac{2}{3}=\frac{400}{3}$ (m)

Diện tích thửa ruộng:

$200\times \frac{400}{3}=\frac{80000}{3}$ (m2)

Cả thửa ruộng thu hoạch được số kg rau củ là:

$\frac{80000}{3}:10\times 50\approx 133333$ (kg) 

Đổi $133333$ kg = $133,333$ tấn

28 tháng 4 2024

0,2m3/phút nhé.

 

a: Xét ΔOMA vuông tại M và ΔOMB vuông tại M có

OM chung

OA=OB

Do đó: ΔOMA=ΔOMB

=>\(\widehat{AOM}=\widehat{BOM}\)

=>OM là phân giác của góc AOB

b: ΔOMA=ΔOMB

=>MA=MB

Xét ΔMEA vuông tại E và ΔMFB vuông tại F có

MA=MB

\(\widehat{MAE}=\widehat{MBF}\)

Do đó: ΔMEA=ΔMFB

=>EA=FB

c: Xét ΔEFH có

FM là đường trung tuyến

\(FM=\dfrac{EH}{2}\)

Do đó: ΔEFH vuông tại F

=>EF\(\perp\)FH

Xét ΔMEA và ΔMHB có

ME=MH

\(\widehat{EMA}=\widehat{HMB}\)(đối đỉnh)

MA=MB

Do đó: ΔMEA=ΔMHB

=>\(\widehat{MEA}=\widehat{MHB}=90^0\)

=>AE//BH

=>BH//OA

d: Ta có: OE+EA=OA

OF+FB=OB

mà EA=FB và OA=OB

nên OE=OF

Xét ΔOAB có \(\dfrac{OE}{OA}=\dfrac{OF}{OB}\)

nên EF//AB

=>FH\(\perp\)AB tại I

ΔMFH cân tại M

mà MI là đường cao

nên I là trung điểm của FH

Xét ΔEFH có

EI,FM là các đường trung tuyến

EI cắt FM tại G

Do đó: G là trọng tâm của ΔEFH

Ta có: ΔOEF cân tại O

mà OK là đường phân giác

nên K là trung điểm của EF

Xét ΔEFH có

G là trọng tâm

K là trung điểm của EF

Do đó: H,G,K thẳng hàng

a: Xét ΔOMA vuông tại M và ΔOMB vuông tại M có

OM chung

OA=OB

Do đó: ΔOMA=ΔOMB

=>\(\widehat{AOM}=\widehat{BOM}\)

=>OM là phân giác của góc AOB

b: ΔOMA=ΔOMB

=>MA=MB

Xét ΔMEA vuông tại E và ΔMFB vuông tại F có

MA=MB

\(\widehat{MAE}=\widehat{MBF}\)

Do đó: ΔMEA=ΔMFB

=>EA=FB

c: Xét ΔEFH có

FM là đường trung tuyến

\(FM=\dfrac{EH}{2}\)

Do đó: ΔEFH vuông tại F

=>EF\(\perp\)FH

Xét ΔMEA và ΔMHB có

ME=MH

\(\widehat{EMA}=\widehat{HMB}\)(đối đỉnh)

MA=MB

Do đó: ΔMEA=ΔMHB

=>\(\widehat{MEA}=\widehat{MHB}=90^0\)

=>AE//BH

=>BH//OA

d: Ta có: OE+EA=OA

OF+FB=OB

mà EA=FB và OA=OB

nên OE=OF

Xét ΔOAB có \(\dfrac{OE}{OA}=\dfrac{OF}{OB}\)

nên EF//AB

=>FH\(\perp\)AB tại I

ΔMFH cân tại M

mà MI là đường cao

nên I là trung điểm của FH

Xét ΔEFH có

EI,FM là các đường trung tuyến

EI cắt FM tại G

Do đó: G là trọng tâm của ΔEFH

Ta có: ΔOEF cân tại O

mà OK là đường phân giác

nên K là trung điểm của EF

Xét ΔEFH có

G là trọng tâm

K là trung điểm của EF

Do đó: H,G,K thẳng hàng

28 tháng 4 2024

          Giải:

Buổi chiều nhập về số thóc là:

25 x \(\dfrac{3}{2}\) = \(\dfrac{75}{2}\) (tấn)

Cả ngày cửa hàng nhập về số tấn thóc là:

   25 + \(\dfrac{75}{2}\) = \(\dfrac{125}{2}\) (tấn)

Đáp số: \(\dfrac{125}{2}\) tấn thóc

 

 

28 tháng 4 2024

Dễ mà. Tự làm đi

 

28 tháng 4 2024

Tham khảo:

Để chứng minh \( QM + QD < AM + AD \), chúng ta có thể sử dụng bất đẳng thức tam giác. Trong trường hợp này, \( QM \) và \( QD \) là độ dài các đoạn thẳng, nên chúng ta có thể áp dụng bất đẳng thức tam giác để chứng minh điều cần chứng minh.

Bất đẳng thức tam giác cho biết rằng trong một tam giác bất kỳ, tổng độ dài của hai cạnh bất kỳ phải lớn hơn độ dài cạnh còn lại. Áp dụng bất đẳng thức tam giác vào tam giác \( AMD \), ta có:

\[
AM + AD > MD
\]

Tương tự, áp dụng bất đẳng thức tam giác vào tam giác \( QMD \), ta có:

\[
QM + QD > MD
\]

Kết hợp hai bất đẳng thức trên, ta có:

\[
(QM + QD) + (AM + AD) > 2 \times MD
\]

Nhưng vì \( Q \) nằm trong tam giác \( AMD \), nên \( MD \) không lớn hơn \( MA \) (vì \( Q \) nằm trong tam giác \( AMD \), nên \( MD \) không vượt quá \( MA \)). Vì vậy:

\[
2 \times MD < MA + AD
\]

Tổng hợp lại, ta có:

\[
(QM + QD) + (AM + AD) > MA + AD
\]

Tức là:

\[
QM + QD > AM + AD
\]

Vậy, đã chứng minh được \( QM + QD < AM + AD \).

AH
Akai Haruma
Giáo viên
28 tháng 4 2024

Lời giải:

$A(x)=B(x)Q(x)-x+1$

$\Rightarrow x^3-2x^2+x=B(x)(x-1)-x+1$

$\Rightarrow (x^3-x^2)-(x^2-x)=B(x)(x-1)-(x-1)$

$\Rightarrow x^2(x-1)-x(x-1)=(x-1)[B(x)-1]$

$\Rightarrow (x-1)(x^2-x)=(x-1)[B(x)-1]$

$\Rightarrow x^2-x=B(x)-1$

$\Rightarrow B(x)=x^2-x+1$

28 tháng 4 2024

            Giải:

a; Diện tích kính làm bể cá là:

(2 + 1,5) x 2 x 0,8 + 2 x 1,5 = 8,6(m2)

b; Thể tích bể cá là:

   2 x 1,5 x 0,8 = 2,4 (m3)

Đáp số: a; 8,6m2

             b; 2,4m3

 

AH
Akai Haruma
Giáo viên
28 tháng 4 2024

Lời giải:

a. Diện tích kính làm bể cá là:
$2\times 1,5+2\times 0,8\times (2+1,5)=8,6$ (m2)

b.

Thể tích bể cá là:

$2\times 1,5\times 0,8=2,4$ (m3)

\(\left(2x\right)^2\left(x-x^2\right)-4x\left(-x^3+x^2-5\right)=20\)

=>\(4x^2\left(x-x^2\right)-4x\left(-x^3+x^2-5\right)=20\)

=>\(4x^3-4x^4+4x^4-4x^3+20x=20\)

=>20x=20

=>x=1

28 tháng 4 2024

F(x)=6x^3 -5x^2+7x-9,g(x)=2x^2-3x+5,h(x)=2x-1

Vận tốc của cano khi đi xuôi dòng là:

23+2=25(km/h)

Độ dài quãng đường cano đi được sau 2,5 giờ là:

25x2,5=62,5(km)