Cho biểu thức \(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
a) Chứng minh \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm $x$ để \(2P=2\sqrt{x}+5\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
Trả lời:
a) Tính A khi x=9
Với x=9, A= \(\frac{\sqrt{9}}{\sqrt{9}-2}\)=3
b) Rút gọn:
T=A-B
T=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)-\(\frac{2}{\sqrt{x}+2}\)-\(\frac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
T=\(\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
T=\(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
c) Tìm x để T nguyên
T=\(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)= 1-\(\frac{4}{\sqrt{x}+2}\)
T nguyên khi: 4 mod (\(\sqrt{x}\)+2)=0
=> \(\sqrt{x}+2\)={4,2,1}
=> \(\sqrt{x}\) ={2,0}
=> x={4,0}
Sao bài của mình làm khi post lên olm bị mất phần sau rồi ???
em làm luôn
\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{x-1}\)
b) thì em chưa làm đc :((
b, \(x=24-16\sqrt{2}=24-2.8.\sqrt{2}=24-8\sqrt{8}\)
\(=24-2.4\sqrt{8}=4^2-2.4\sqrt{8}+\left(\sqrt{8}\right)^2=\left(4-\sqrt{8}\right)^2\)
*, làm tiếp bước Q làm : \(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(4-\sqrt{8}\right)^2}=\left|4-\sqrt{8}\right|=4-\sqrt{8}\)( vì \(4-\sqrt{8}>0\))
hay \(\frac{1}{4-\sqrt{8}-1}=\frac{1}{3-\sqrt{8}}=3+\sqrt{8}\)
Vậy với \(x=24-16\sqrt{2}\)thì \(P=3+\sqrt{8}\)
a, Ta có :
\(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x+\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}-2}\)sử dụng tam thức bậc 2 khai triển biểu thức trên tử nhé
\(=\frac{\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(Q=\frac{\left(\sqrt{x}\right)^3-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)
b, Ta có : \(P=Q\)hay \(2\sqrt{x}+1=x-1\Leftrightarrow-x+2\sqrt{x}+2=0\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-3=0\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
TH1 : \(\sqrt{x}=1+\sqrt{3}\Leftrightarrow x=\left(1+\sqrt{3}\right)^2=1+2\sqrt{3}+3=4+2\sqrt{3}\)
TH2 : \(\sqrt{x}=1-\sqrt{3}\Leftrightarrow x=\left(1-\sqrt{3}\right)^2=1-2\sqrt{3}+3=4-2\sqrt{3}\)
Vậy \(x=4+2\sqrt{3};x=4-2\sqrt{3}\)thì P = Q
んuリ イ giải pt vô tỉ không xét ĐK là tai hại :))
\(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(Q=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\left(x\sqrt{x}-\sqrt{x}\right)+\left(2x-2\right)}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)
Để P = Q thì \(2\sqrt{x}+1=x-1\)( x ≥ 1 ; x ≠ 4 )
<=> \(x-2\sqrt{x}-2=0\)
<=> \(\left(\sqrt{x}-1\right)^2-3=0\)
<=> \(\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
<=> \(\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\left(tm\right)\\x=4-2\sqrt{3}\left(ktm\right)\end{cases}}\)
Vậy với \(x=4+2\sqrt{3}\)thì P = Q
a) Với \(x>0;x\ne1\), ta có:
\(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\left[\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
Vậy với \(x>0,x\ne1\)thì \(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(\Rightarrow2P=\frac{2\sqrt{x}+2}{\sqrt{x}}\)
\(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\left(ĐKXĐ:x\ne0\right)\left(1\right)\)
Mà theo đề bài : \(x>0\)nên phương trình luôn được xác định.
\(\left(1\right)\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{\sqrt{x}\left(2\sqrt{x}+5\right)}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{x}+2=\sqrt{x}\left(2\sqrt{x}+5\right)\)
\(\Leftrightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x}+2-2x-5\sqrt{x}\)
\(\Leftrightarrow-2x-3\sqrt{x}+2=0\Leftrightarrow2x+3\sqrt{x}-2=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}-1=0\\\sqrt{x}+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x}=1\\\sqrt{x}=-2\left(vn\right)\end{cases}}\Leftrightarrow2\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(TMĐK:x>0;x\ne1\right)\)
Vậy \(2P=2\sqrt{x}+5\Leftrightarrow x=\frac{1}{4}\)