\(\sqrt{7-x}+\sqrt{2+x}\)
Tìm giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Đổi 30′=12(h)30′=12(h)
Gọi quãng đường ABAB là x,x>0x,x>0
→→Thời gian đi là x40,x40,Thời gian về là x35x35
Ta có tổng thời gian đi và về là 6h30′=132(h)6h30′=132(h)
→x40+12+x35=132→x40+12+x35=132
→356x=6→356x=6
→x=112(km)
Nửa chu vi miếng đất hình chữ nhật là: 100:2=50(m)100:2=50(m)
Gọi chiều dài miếng đất là: x(m)x(m)
chiều rộng miếng đất là: y(m)y(m)
(y<x<50)(y<x<50)
Miếng đất hình chữ nhật có nửa chu vi là 50m50m.
⇒ Phương trình: x+y=50x+y=50 (1)(1)
5 lần chiều rộng hơn 2 lần chiều dài 40m.
⇒ Phương trình: −2x+5y=40−2x+5y=40 (2)(2)
Từ (1)(1) và (2)(2) ta có hệ phương trình:
{x+y=50−2x+5y=40{x+y=50−2x+5y=40
⇔ {y=50−x−2x+5(50−x)=40{y=50−x−2x+5(50−x)=40
⇔ {y=50−x−2x+250−5x=40{y=50−x−2x+250−5x=40
⇔ {y=50−x−2x−5x=40−250{y=50−x−2x−5x=40−250
⇔ {y=50−x−7x=−210{y=50−x−7x=−210
⇔ {y=50−30x=30{y=50−30x=30
⇔ {y=20(Nhận)x=30(Nhận){y=20(Nhận)x=30(Nhận)
Vậy miếng đất hình chữ nhật có chiều dài là 30m30m và chiều rộng 20m20m.
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)
=> chiều dài mảnh đất là x+6 (m)
Theo định lý Pytago ta có độ dài đường chéo là:
√x2+(x+6)2=√2x2+12x+36(m)⇒√2x2+12x+36=√654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒⎡⎣x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)x2+(x+6)2=2x2+12x+36(m)⇒2x2+12x+36=654.x⇒2x2+12x+36=6516x2⇒−3316x2+12x+36=0⇒[x=8(m)x=−2411(ktm)⇒S=x.(x+6)=8.(8+6)=112(m2)
Vậy diện tích mảnh đất là 112m2