Bài 1: Thu gọn các biểu thức sau:
a/ (–xy)( x2 + 2xy – 3)
b/ (12x6y5 – 3x3y4 + 4x2y) : 6x2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình: x^4-5x^3+6x^2-5x+1=0
x=2-căn bậc hai(3),
x=căn bậc hai(3)+2;
x = -(căn bậc hai(3)*i-1)/2;
x = (căn bậc hai(3)*i+1)/2;
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{a+c}\right)\)
\(\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{6}\left(\frac{a+b+c}{abc}\right)=\frac{1}{6}\)
Dấu \(=\)khi \(a=b=c=3\).
bài này áp dụng bđt phụ \(\frac{1}{x_1+x_2+x_3+x_4+x_5+x_6}\le\frac{1}{36}\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}+\frac{1}{x_5}+\frac{1}{x_6}\right)\)
là oke nhé =))
về cách chứng minh thì bạn dùng svacxo cho vp là xong
A = ( 4x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
B = ( y - 5/2 )2 + 7/4 ≥ 7/4 > 0 ∀ x ( đpcm )
C = 2( x - 1/2 )2 + 3/2 ≥ 3/2 > 0 ∀ x ( đpcm )
D = ( 3x - 1 )2 + ( 5y + 1 )2 + 2 ≥ 2 > 0 ∀ x, y ( đpcm )
Trả lời:
a, \(A=16x^2+8x+3=\left(16x^2+8x+1\right)+2=\left(4x+1\right)^2+2\ge2>0\forall x\)
Dấu "=" xảy ra khi x = - 1/4
Vậy bt A luôn dương với mọi x.
b, \(B=y^2-5y+8=x^2-2.y.\frac{5}{2}+\frac{25}{4}+\frac{7}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall y\)
Dấu "=" xảy ra khi x = 5/2
Vậy bt B luôn dương với mọi y.
c,
\(C=2x^2-2x+2=2\left(x^2-x+1\right)=2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\)
\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}>0\forall x\)
Dấu "=" xảy ra khi x = 1/2
Vậy bt C luôn dương với mọi x.
d, \(D=9x^2-6x+25y^2+10y+4\)
\(=9x^2-6x+25y^2+10y+1+1+2\)
\(=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\)
\(=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2>0\forall x;y\)
Dấu "=" xảy ra khi x = 1/3; y = - 1/5
Vậy bt D luôn dương với mọi x;y
Trả lời:
\(A=\left(1-\frac{x^2-x}{x-1}\right)\left(1+\frac{x^2+x}{x+1}\right)+x^2\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(=\frac{x-1-x^2+x}{x-1}.\frac{x+x+x^2+x}{x+1}+x^2\)
\(=\frac{-x^2+2x-1}{x-1}.\frac{x^2+2x+1}{x+1}\)\(+x^2\)
\(=\frac{-\left(x^2-2x+1\right)}{x-1}.\frac{\left(x+1\right)^2}{x+1}+x^2\)
\(=\frac{-\left(x-1\right)^2}{x-1}.\frac{\left(x+1\right)^2}{x+1}+x^2\)
\(=-\left(x-1\right).\left(x+1\right)+x^2\)
\(=-\left(x^2-1\right)+x^2=-x^2+1+x^2=1\)
\(B=\left(2-\frac{x^2-x}{x-1}\right)\left(2+\frac{x^2+x}{x+1}\right)\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(=\frac{2x-2-x^2+x}{x-1}.\frac{2x+2+x^2+x}{x+1}\)
\(=\frac{-x^2+3x-2}{x-1}.\frac{x^2+3x+2}{x+1}\)
\(=\frac{-\left(x^2-3x+2\right)}{x-1}.\frac{x^2+3x+2}{x+1}\)
\(=\frac{-\left(x^2-x-2x+2\right)}{x-1}.\frac{x^2+x+2x+2}{x+1}\)
\(=\frac{-\left[x\left(x-1\right)-2\left(x-1\right)\right]}{x-1}.\frac{x\left(x+1\right)+2\left(x+1\right)}{x+1}\)
\(=\frac{-\left(x-1\right)\left(x-2\right)}{x-1}.\frac{\left(x+1\right)\left(x+2\right)}{x+1}\)
\(=-\left(x-2\right).\left(x+2\right)=-\left(x^2-4\right)=-x^2+4\)
\(a.\left(x^2+2x+x+2\right)\left(x^2+5x+6x+30\right)-5\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+6\right)-5=\left(x^2+7x+6\right)\left(x^2+7x+10\right)\)
Đặt \(x^2+7x+8=a\Rightarrow\text{Biểu thức }=\left(a-2\right)\left(a+2\right)-5=a^2-9=\left(a-3\right)\left(a+3\right)\)
nên : \(BT=\left(x^2+7x+5\right)\left(x^2+7x+11\right)\)
b.\(BT=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
Đặt \(x^2+5ax+5a^2=y\Rightarrow BT=\left(y-a^2\right)\left(y+a^2\right)+a^4=y^2=\left(x^2+5ax+5a^2\right)^2\)
a) \(A=4x^2+3y^2-8x+11=\left(4x^2-8x+4\right)+3y^2+7\)
\(A=4\left(x-1\right)^2+3y^2+7\ge7\Rightarrow minA=7\)
b) \(B=\left(x-2y-4\right)^2+4xy+34=x^2+4y^2-8x+16y+34+16\)
\(B=\left(x^2-8x+16\right)+\left(4y^2+16y+16\right)+18\)
\(B=\left(x-4\right)^2+4\left(y+2\right)^2+18\ge18\Rightarrow minB=18\)
c) \(C=9x^2+y^2-6x+4y-24=\left(9x^2-6x+1\right)+\left(y^2+4y+4\right)-29\)
\(\left(3x-1\right)^2+\left(y+2\right)^2-29\ge-29\Rightarrow minC=-29\)
d) \(D=\left(2x-5y\right)^2+20xy-8x+10y-121\)
\(D=4x^2-20xy+25y^2+20xy-8x+10y-121\)
\(D=\left(4x^2-8x+4\right)+\left(25y^2+10y+1\right)-126\)
\(D=4\left(x-1\right)^2+\left(5y+1\right)^2-126\ge-126\Rightarrow minD=-126\)
Trả lời:
a, \(2x-1\ge1\)
\(\Leftrightarrow2x\ge2\)
\(\Leftrightarrow x\ge1\)
Vậy \(x\ge1\) là nghiệm của pt.
0 x 1
b, \(3x-2\ge1\)
\(\Leftrightarrow3x\ge3\)
\(\Leftrightarrow x\ge1\)
Vậy \(x\ge1\) là nghiệm của pt.
( biểu diễn giống ý trên )
c, \(2-2x< 3\)
\(\Leftrightarrow-2x< 1\)
\(\Leftrightarrow x>-\frac{1}{2}\)
Vậy \(x>-\frac{1}{2}\) là nghiệm của pt.
0 x -1/2
d, \(4-3x< 5\)
\(\Leftrightarrow-3x< 1\)
\(\Leftrightarrow x>-\frac{1}{3}\)
Vậy \(x>-\frac{1}{3}\) là nghiệm của pt.
0 x -1/3
Trả lời:
a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)
b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)
\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)
\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)
a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)
b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)