bài 1 Tìm GTNN của biểu thức
A= 25x2+3y2-10x+11
B= (x-3)2+(x-11)2
C= (x+1).(x-2).(x-3).(x-6)
cac ban giup minh nhe. minh dang can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =[ (2x +1)2 + 2.(2x+1).(3 - 2x) + (3 - 2x)2] + [(2x+ 3)2 - (3 - 2x)2]
A = = (2x + 1 + 3 - 2x)2 + (2x+ 3 + 3 - 2x). (2x+ 3- 3 + 2x)
A = 42 + 6.4x = 16 + 24x
=a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2[(b - c) + (c - a)]
= a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2(b - c) - c(a + b)^2(c - a)
= [a(b + c)^2(b - c) - c(a + b)^2(b - c)]+ [b(c + a)^2(c - a) - c(a + b)^2(c - a)]
= (b - c)[a(b + c)^2 - c(a + b)^2] + (c - a)[b(c + a)^2 - c(a + b)^2]
= (b - c)(ab^2 + ac^2 - ca^2 - cb^2) + (c - a)(bc^2 + ba^2 - ca^2 - cb^2)
= (b - c)[ac(c - a) - b^2(c - a)] + (c - a)[a^2(b - c) - bc(b - c)]
= (b - c)(c - a)(ac - b^2) + (c - a)(b - c)(a^2 - bc)
= (b - c)(c - a)(ac - b^2 + a^2 - bc)
= (b - c)(c - a)[(a^2 - b^2) + (ac - bc)]
= (b - c)(c - a)[(a - b)(a + b) + c(a - b)]
= (b - c)(c - a)(a - b)(a + b + c)
= (a - b)(b - c)(c - a)(a + b + c).
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
______________________________________________
li-ke cho mk nhé bn nguyễn thị huyền thương
C=[(x+1)(x-6)][(x-2)(x-3)]
=(x2-5x-6)(x2-5x+6)
=(x2-5x)2-36>=-36
GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5
B=(x-3)2+(x-11)2
=x2-6x+9+x2-22x+121
=2x2-28x+130
=2(x2-14x+65)
=2(x2-2.7x+72-72+65)
=2[(x-7)2-49+65]
=2(x-7)2+32
=> vì 2(x-7)2 >= 0
=>2(x-7)2+32 >= 32
=> GTNN của B=32. Khi x=7