mọi ng ơi ấn phân số trên máy tính kiểu j ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>0; x<>9
a:\(P=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{x\sqrt{x}-9\sqrt{x}}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\sqrt{x}-3}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{x-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\cdot\sqrt{x}}:\dfrac{x-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-3\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-3}\)
b: P>1
=>P-1>0
=>\(\dfrac{1-\sqrt{x}+3}{\sqrt{x}-3}>0\)
=>\(\dfrac{4-\sqrt{x}}{\sqrt{x}-3}>0\)
=>\(\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
=>\(3< \sqrt{x}< 4\)
=>9<x<16
Bước một: Nhập số tự nhiên
Bước hai: Nhấn =
Bước ba: Nhấn Shift
Bước bốn: Nhấn FACT
- 5 x - 5
= -1 x 5 x (-5)
= -1 x [5 x (-5)]
= - [(-5) x 5]
= - [- 5 + (-5) + (-5) + (-5) + (-5)]
= - (-5) + -(-5) + - (-5) + -(-5) = 25
5 x 5 = 5 + 5 + 5 + 5 + 5
⇒ 5 + 5 +5 +5 +5 = -(-5) + -(-5) + -(-5) + -(-5) + -(-5)
Từ lập luận trên ta có: Vậy 5 = -(-5) em nhé
Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
=>\(\dfrac{AB}{sin40}=\dfrac{8}{sin50}\)
=>\(AB=8\cdot\dfrac{sin40}{sin50}\simeq6,71\left(cm\right)\)
Xét ΔABC có \(\widehat{B}+\widehat{C}=50^0+40^0=90^0\)
nên ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\simeq\dfrac{1}{2}\cdot8\cdot6,71=26,84\left(cm^2\right)\)
Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)
=>\(2R=\dfrac{6.71}{sin40}\simeq10,44\)
=>\(R\simeq5,22\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{8^2+6,71^2}\simeq10,44\left(cm\right)\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{6,71+8+10,44}{2}\simeq12,6\left(cm\right)\)
\(r=\dfrac{S}{p}=\dfrac{26.84}{12,6}\simeq2,13\left(cm\right)\)
a) Do x ⋮ 5
⇒ x ∈ B(5) = {0; 5; 10; ...; 35; 40; 45; ...}
Mà x ≤ 40
⇒ x ∈ {0; 5; 10; ...; 35; 40}
b) Do 16 ⋮ x
⇒ x ∈ Ư(16) = {1; 2; 4; 8; 16}
c) 2x + 3 ∈ Ư(10) = {1; 2; 5; 10}
Mà x là số tự nhiên nên 2x + 3 ≥ 3 và 2x + 3 là số tự nhiên lẻ
⇒ 2x + 3 ∈ {5}
⇒ 2x ∈ {2}
⇒ x ∈ {1}
a: \(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: \(2P=2\sqrt{x}+5\)
=>\(2\left(\sqrt{x}+1\right)=\sqrt{x}\left(2\sqrt{x}+5\right)\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
mà \(\sqrt{x}+2>=2>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-1=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>\(x=\dfrac{1}{4}\left(nhận\right)\)
a: Thay x=9 vào P, ta được:
\(P=\dfrac{9+3}{\sqrt{9}-2}=\dfrac{12}{3-2}=\dfrac{12}{1}=12\)
b: \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c: Đặt A=P:Q
\(=\dfrac{x+3}{\sqrt{x}-2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}>=2\cdot\sqrt{\sqrt{x}\cdot\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\) với mọi x thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left(\sqrt{x}\right)^2=3\)
=>x=3(nhận)
ĐKXĐ: x>=0; x<>4
a: Thay x=9 vào A, ta được:
\(A=\dfrac{3}{3-2}=\dfrac{3}{1}=3\)
b: T=A-B
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-2\left(\sqrt{x}-2\right)-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
c: Để T nguyên thì \(\sqrt{x}-2⋮\sqrt{x}+2\)
=>\(\sqrt{x}+2-4⋮\sqrt{x}+2\)
=>\(-4⋮\sqrt{x}+2\)
mà \(\sqrt{x}+2>=2\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}+2\in\left\{2;4\right\}\)
=>\(x\in\left\{0;4\right\}\)
Kết hợp ĐKXĐ, ta được: x=0
Em chọn vào biểu tượng \(\Sigma\) góc tái màn hình em nhé. Sau đó em nhấn biểu tượng phân số rồi em chèn phân số vào là được.