Tìm tất cả các số nguyên x, y sao cho:
x2 - 12y2 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x = 9/3 -> y = 2/3 * 9/3 = 2 (9/3;2)
Đồ thị hám số y=2/3x là 1 đường thẳng đi qua gốc và (2/3;2)
Đồ thị tự vẽ
a) Xét tam giác ABI và tam giác ACI có:
BI = CI (gt)
AB = AC (gt)
AI : cạnh chung
=> Tam giác ABI = tam giác ACI
b) Xét tam giác ABC có AB = AC
=> Tam giác ABC cân tại A
=> AI vừa là đường trung tuyến (vì I là trung điểm BC), vừa là đường cao
=> AI vuông góc BC
c) Ta có: AI vuông góc BC (cmt)
EC vuông góc BC (gt)
=> EC // AI
a)
\(2x=3y\Rightarrow y=\frac{2x}{3}\)
\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)
(x,y,z)=(15/7,10/7,6/7)
(x,y,z)=(-15/7,-10/7,-6/7)
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^{20-12}=2^8\)
\(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{2^3.3^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=8.243=1944\)
y=0=> x=+-1
với x khác +-1
(x-1)(x+1)=12y^2
VP hai số chăn liên tiếp một số chia hết cho 3
6n(6n+2)=12n(3n+1)
n(3n+1)=y^2
n=3n+1 vô lý
=> x=+-1 và y=0