Phân tích đa thức thành nhân tử:
a) x3+y3+z3-3xyz
b)a2(b-c)+b2(c-a)+c2(a-b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ CMB có EF là đường trung bình của ∆.
=> EF // MB <=> EF // AB. (1)
Xét ∆ ADM có KI là đường trung bình của ∆.
=> KI // AM <=> KI // AB. (2)
Từ (1);(2) => Tứ giác EFIK là hình thang. (3)
Gọi giao của CM và AD là O.
Xét ∆ COA có EK là đương trung bình ∆.
=> EK // CA.
Lại có KI // AM
Mà CA hợp với AM góc 60 độ (∆ACM đều)
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ.
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4)
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm
a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)