Một chiếc xe chứa tối đa 80 người. Trên xe hiện có 75% số khách đang đứng và 1/9 số khách đang ngồi. Hỏi xe đang chở bao nhiêu khách, biết trên xe có 38 sinh viên đang đứng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)
\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)
Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)
\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)
Để pt có hai nghiệm phân biệt thì Δ' > 0
<=> ( m + 1 )2 - 2m - 2 > 0
<=> m2 + 2m + 1 - 2m - 2 > 0
<=> m2 - 1 > 0 => m > 1 hoặc m < -1
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
Khi đó x12 + x22 = 8
<=> ( x1 + x2 )2 - 2x1x2 = 8
<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0
<=> 4m2 + 4m - 8 = 0
<=> m2 + m - 2 = 0
<=> ( m - 1 )( m + 2 ) = 0
<=> m = 1 ( loại ) hoặc m = -2 (tm)
Vậy ...
câu 1
\(\frac{y^2z^2}{x\left(y^2+z^2\right)}=\frac{1}{x}.\left(\frac{y^2z^2}{y^2+z^2}\right)=\frac{1}{x}:\frac{y^2+z^2}{y^2z^2}=\frac{1}{x}:\left(\frac{1}{y^2}+\frac{1}{z^2}\right)\)
tương tự rồi gọi ẩn
câu hình là ở trong đề thi hsg 9 tỉnh đắk lắk năm nay luôn nè :))
Khai phương tích 12.30.40 được:
(A) 1200 ; (B) 120 ; (C) 12 ; (D) 240.
Chọn B
Khai phương tích 12.30.40 (=12.12.10.10) ta được 12.10= 120 (Chọn B)
a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)
do \(a\ge0\)
b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)
c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)
\(=15a-3a=12a\)do a > 0
d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)
Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)
Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)