ca nô đi xuôi dòng từ A đến B mất 1 giờ 10 phút và đi từ B về A mất 1 giờ 30 phút.Tính quãng đường AB, bt vận tốc nước 2 km/h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó ΔBAD=ΔBED
b: Xét ΔBKC có
KE,CA là các đường cao
KE cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC
a. Sai
ĐKXĐ: \(n\ge3\) (\(A_n^k\) thì \(n\ge k\), mà k lớn nhất trong ba số là 3)
b. Sai (câu này coi chừng bị lừa)
\(\dfrac{1}{A_n^2}+\dfrac{1}{A_n^3}\ge\dfrac{1}{C_{n+1}^2}\)
\(\Leftrightarrow\dfrac{\left(n-2\right)!}{n!}+\dfrac{\left(n-3\right)!}{n!}\ge\dfrac{2.\left(n-1\right)!}{\left(n+1\right)!}\)
\(\Leftrightarrow\dfrac{1}{n\left(n-1\right)}+\dfrac{1}{n\left(n-1\right)\left(n-2\right)}\ge\dfrac{2}{\left(n+1\right).n}\)
\(\Leftrightarrow\dfrac{1}{n-1}+\dfrac{1}{\left(n-1\right)\left(n-2\right)}\ge\dfrac{2}{n+1}\)
\(\Leftrightarrow\left(n+1\right)\left(n-2\right)+n+1\ge2\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow n^2-6n+5\le0\)
\(\Leftrightarrow1\le n\le5\)
Kết hợp ĐKXĐ \(\Rightarrow3\le n\le5\) (chỗ này quên kết hợp ĐKXĐ là sẽ chọn sai đáp án) (1)
c. Sai
Từ (1) và n là số tự nhiên \(\Rightarrow n=\left\{3;4;5\right\}\) có 3 nghiệm
d.
\(x^3-12x^2+47x-60=0\Rightarrow x=\left\{3;4;5\right\}\)
Đúng là chung tập nghiệm, nhưng 1 cái biến n 1 cái biến x cứ cấn cấn.
Gọi chiều cao của các tam giác cân màu hồng là x>0
\(\Rightarrow\) Độ dài đường chéo đáy: \(c=4-2x\)
Do đáy là hình vuông nên cạnh hình vuông: \(a=\dfrac{c}{\sqrt{2}}=\dfrac{4-2x}{\sqrt{2}}=2\sqrt{2}-x\sqrt{2}\)
Cạnh của tam giác cân màu hồng: \(l=\sqrt{\left(\dfrac{4}{2}\right)^2+x^2}=\sqrt{x^2+4}\)
Chiều cao chóp: \(h=\sqrt{l^2-\left(\dfrac{c}{2}\right)^2}=\sqrt{x^2+4-\left(2-x\right)^2}=2\sqrt{x}\)
\(V=\dfrac{1}{3}h.a^2=\dfrac{4}{3}.\sqrt{x}.\left(2-x\right)^2\)
\(\Rightarrow V^2=\dfrac{16}{9}x\left(2-x\right)^4=\dfrac{16}{9}.4x.\left(2-x\right)\left(2-x\right)\left(2-x\right)\left(2-x\right)\)
\(\le\dfrac{16}{9}\left(\dfrac{4x+2-x+2-x+2-x+2-x}{5}\right)^5=\dfrac{16}{9}.\left(\dfrac{8}{5}\right)^5\)
Dấu "=" xảy ra khi \(4x=2-x\Rightarrow x=\dfrac{2}{5}\)
\(\Rightarrow\) Cạnh tam giác cân: \(l=\sqrt{x^2+4}=\sqrt{\left(\dfrac{2}{5}\right)^2+4}=\dfrac{2\sqrt{26}}{5}\)
Lời giải:
a.
$1\frac{2}{5}x=(0,5)^2=0,25$
$1,4x=0,25$
$x=0,25:1,4=\frac{5}{28}$
b.
$2(2x+\frac{2}{3})-\frac{3}{4}=\frac{3}{12}:\frac{1}{2}$
$2(2x+\frac{2}{3})-\frac{3}{4}=\frac{1}{2}$
$2(2x+\frac{2}{3})=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}$
$2x+\frac{2}{3}=\frac{5}{4}:2=\frac{5}{8}$
$2x=\frac{5}{8}-\frac{2}{3}=\frac{-1}{24}$
$x=\frac{-1}{24}:2=\frac{-1}{48}$
Bạn lưu ý lần sau gõ đề bằng công thức toán (nhấn vào biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
=>BA=BM
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: ta có: ΔBAM đều
=>\(\widehat{BAM}=\widehat{BMA}=60^0\); MA=MB=AB
\(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
ΔBAC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+60^0=90^0\)
=>\(\widehat{ACB}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=120^0\)
I nằm giữa E và F
=>IE+IF=EF
=>IF+1=7
=>IF=6(cm)
M nằm giữa I và F
=>MI+MF=IF
=>\(\dfrac{1}{3}MF+MF=6\)
=>\(\dfrac{4}{3}MF=6\)
=>\(MF=6:\dfrac{4}{3}=4,5\left(cm\right)\)
Ta có: IM+MF=IF
=>IM+4,5=6
=>IM=1,5(cm)
a Xét ΔAMC và ΔABN có
AM=AB
\(\widehat{MAC}\) chung
AC=AN
Do đó: ΔAMC=ΔABN
b: Gọi K là giao điểm của CM với BN
Ta có: ΔAMC=ΔABN
=>\(\widehat{AMC}=\widehat{ABN}\)
Xét tứ giác AMBK có \(\widehat{AMH}=\widehat{ABH}\)
nên AMBK là tứ giác nội tiếp
=>\(\widehat{BAM}=\widehat{BKM}=90^0\)
=>BN\(\perp\)CM tại K
Gọi vận tốc thật của cano là x(km/h)
(Điều kiện: x>2)
vận tốc lúc đi là x+2(km/h)
Vận tốc lúc về là x-2(km/h)
\(1h10p=\dfrac{7}{6}\left(giờ\right);1h30p=1,5\left(giờ\right)\)
Độ dài quãng đường lúc đi là \(\dfrac{7}{6}\left(x+2\right)\left(km\right)\)
Độ dài quãng đường lúc về là 1,5(x-2)(km)
Do đó, ta có phương trình:
\(\dfrac{7}{6}\left(x+2\right)=1,5\left(x-2\right)\)
=>\(\dfrac{7}{6}x+\dfrac{7}{3}=1,5x-3\)
=>\(\dfrac{7}{6}x-1,5x=-3-\dfrac{7}{3}\)
=>\(-\dfrac{1}{3}x=-\dfrac{16}{3}\)
=>x=16(nhận)
Vậy: Độ dài quãng đường AB là:
\(\dfrac{7}{6}\left(16+2\right)=\dfrac{7}{6}\cdot18=21\left(km\right)\)
Giải
1 giờ 10 phút = \(\dfrac{7}{6}\) giờ; 1 giờ 30 phút = 1,5 giờ
Cứ một giờ ca nô xuôi dòng được: 1 : \(\dfrac{7}{6}\) = \(\dfrac{6}{7}\)(quãng sông)
Cứ một giờ ca nô ngược dòng được: 1 : 1,5 = \(\dfrac{2}{3}\)(quãng sông)
2 km ứng với phân số là: (\(\dfrac{6}{7}\) - \(\dfrac{2}{3}\)): 2 = \(\dfrac{2}{21}\) (quãng sông)
Quãng sông AB dài là: 2 : \(\dfrac{2}{21}\) = 21 (km)
Kết luận: quãng sông AB dài 21 km.