10+5.(x-13)=35
cứu mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n+8\right)\) chia hết `(n+3)`
`(n+3)+5` chia hết `(n+3)`
`5` chia hết cho `(n+3)`
Nên `(n+3)` là ước của 5
Mà n là số tự nhiên nên \(n+3\ge3\)
Suy ra `n+3=5`
Suy ra `n=2`
Ta có:
\(x>x-2\)
Để \(x\left(x-2\right)\) thì \(x>0\) và \(x-2< 0\)
*) \(x-2< 0\)
\(x< 0+2\)
\(x< 2\)
Vậy \(0< x< 2\) thì \(x\left(x-2\right)< 0\)
có vì:
24 chia hết cho 8
46-14=32 chia hết cho 8
nên 46+24-14 chia hết cho 8
ko lo sợ sai nhé vì mình học lớp 7
có. vì: 46+24-14 = 24+(46-14) = 24+32 = 8(3+4)
vì 8\(⋮\)8 nên 8(3+4)\(⋮\)8 hay 46+24-14\(⋮\)8
\(x\) \(\in\) B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32;...}
Vì \(x\) < 30 nên \(x\) \(\in\) {0; 4; 8; 12;16; 20;24; 28}
Vây \(x\) \(\in\) {0; 4; 8; 12;16; 20; 24; 28}
\(S=1+3^2+3^4+3^6+3^8+...+3^{2020}+3^{2022}\)
\(=\left(1+3^2+3^4+3^6\right)+\left(3^8+3^{10}+3^{12}+3^{14}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}+3^{2022}\right)\)
\(=\left(1+3^2+3^4+3^6\right)+3^8\left(1+3^2+3^4+3^6\right)+...+3^{2016}\left(1+3^2+3^4+3^6\right)\)
\(=820\left(1+3^8+...+3^{2016}\right)⋮820\)
a: \(n+6⋮n+1\)
=>\(n+1+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;5\right\}\)
=>\(n\in\left\{0;4\right\}\)
b: \(4n+9⋮2n+1\)
=>\(4n+2+7⋮2n+1\)
=>\(7⋮2n+1\)
mà \(2n+1>=1\left(n\in N\right)\)
nên \(2n+1\in\left\{1;7\right\}\)
=>\(n\in\left\{0;3\right\}\)
\(\dfrac{x-1}{2021}\) + \(\dfrac{x-2}{2022}\) = \(\dfrac{x-3}{2022}\) + \(\dfrac{x-4}{2004}\)
(\(\dfrac{x-1}{2021}\) + 1) + (\(\dfrac{x-2}{2022}\) ) = (\(\dfrac{x-3}{2023}\)+ 1) + (\(\dfrac{x-4}{2023}\) + 1)
\(\dfrac{x-1+2021}{2021}\) + \(\dfrac{x-2+2022}{2022}\) = \(\dfrac{x-3+2023}{2023}\) + \(\dfrac{x-2+2024}{2024}\)
\(\dfrac{x-2020}{2021}\) + \(\dfrac{x+2020}{2022}\) = \(\dfrac{x-2020}{2023}\) + \(\dfrac{x-2020}{2024}\)
(\(x-2020\)).(\(\dfrac{1}{2021}\) + \(\dfrac{1}{2022}\)) - (\(x-2020\))(\(\dfrac{1}{2023}\) + \(\dfrac{1}{2024}\)) = 0
\(\left(x-2020\right)\).(\(\dfrac{1}{2021}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\)) = 0
Vì (\(\dfrac{1}{2021}+\dfrac{1}{2022}-\dfrac{1}{2023}-\dfrac{1}{2024}\)) > 0
Nên \(x\) - 2020 = 0
\(x=2020\)
Vậy \(x=2020\)
`a, 2x + 5^2 . 3 = 11`
`=> 2x + 25 . 3 = 11`
`=> 2x + 75 = 11`
`=> 2x = 11 - 75`
`=> 2x = -64`
`=> x = -64 : 2`
`=> - 32`
Vậy `x = -32`
`b, 5^3 . 4 - 2(x - 7) = 58`
`=> 125 . 4 - 2(x - 7) = 58`
`=> 500 - 2(x - 7) = 58`
`=> 2(x - 7) = 500 - 58`
`=> 2(x - 7) = 442`
`=> x - 7 = 442 : 2`
`=> x - 7 = 221`
`=> x = 221 + 7`
`=> x = 228`
Vậy `x = 228`
`10+5.(x-13)=35`
`5.(x-13)=35-10`
`5.(x-13)=25`
`x-13=25:5`
`x-13=5`
`x=5+13`
`x=18`