x^2+x+3=y^2
tìm các cặp số guyên thỏa mãn....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
Ta có:
(6x+8)(6x+6)(6x+7)2 = 72
Đặt \(6x+7=a\)
\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)
\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)
Đễ thấy \(a^2+8>0\)
\(\Rightarrow a^2-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
(36x^2+84x+48)(36x^2+84x+49)=72
dat 36x^2+84x+48=a
phuong trinh da cho co dang
a(a+1)=72
a^2+a-72=0
a=8 hoac a=-9
a=8=>36x^2+84x+48=8
=>x=-2/3 hoac x=-5/3
a=-9=>36x^2+84x+48=-9(vo nghiem)
ABCABC có trung tuyến AM=15cm,BN=36cm,CL=39cmAM=15cm,BN=36cm,CL=39cm
đặt AB2=c′,AC2=b′,BC2=a′AB2=c′,AC2=b′,BC2=a′
ta có:
AM2=b′+c′2−a′4AM2=b′+c′2−a′4
BN2=c′+a′2−b′4BN2=c′+a′2−b′4
CL2=a′+b′2−c′4CL2=a′+b′2−c′4
suy ra:
−a′+2b′+2c′=900−a′+2b′+2c′=900
2a′−b′+2c′=51842a′−b′+2c′=5184
2a′+2b′−c′=60842a′+2b′−c′=6084
suy ra:
AB=26cmAB=26cm
AC=4√16cmAC=416cm
BC=2√601cmBC=2601cm
BC2=AC2+AB2−2.AB.AC.cosABC2=AC2+AB2−2.AB.AC.cosA
suy ra A=117o34′28.43′′A=117o34′28.43″
SABC=12AB.AC.sinA=360cm2
\(P=x^2-x\left(a+b\right)+ab+x^2-x\left(b+c\right)+bc+x^2-x\left(c+a\right)+ac+x^2\)
\(=4x^2-2x\left(a+b+c\right)+\left(ab+bc+ac\right)\)
Thay x được \(P=\left(a+b+c\right)^2-\left(a+b+c\right)^2+\left(ab+bc+ca\right)=ab+bc+ac\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b}\Rightarrow\frac{a+b}{ab}=\frac{1}{a+b}\)
\(\Rightarrow\left(a+b\right)^2=ab\)
\(\Rightarrow a^2+b^2+2ab=ab\)
\(\Rightarrow a^2+b^2=-ab\)
\(\Rightarrow\frac{b}{a}+\frac{a}{b}=\frac{a^2+b^2}{ab}=-\frac{ab}{ab}=-1\)
Vậy ....