CHO \(A,B,C\in R\)VÀ ĐÔI MỘT KHÁC NHAU . VỚI \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=0\)
HÃY THU GỌN BIỂU THỨC SAU \(C=\frac{BC}{A^2+2BC}+\frac{CA}{B^2+2CA}+\frac{AB}{C^2+2AB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẫn có \(AB+BC+CA=0\), làm tương tự câu a (à giờ mới nhận ra có 2 chữ A, B và C trùng nhau).
Nên anh kí hiệu biểu thức là \(b\) nha.
\(\frac{A^2}{A^2+2BC}=\frac{A^2}{A^2+BC-CA-AB}=-\frac{A^2}{\left(A-B\right)\left(C-A\right)}\)
Quy đồng mẫu được \(b=-\left[\frac{A^2\left(B-C\right)+B^2\left(C-A\right)+C^2\left(A-B\right)}{\left(A-B\right)\left(B-C\right)\left(C-A\right)}\right]\).
Tự làm tiếp nha em, lâu rồi anh không làm cái này nên cũng lười.
Hk đâu bạn ơi, ta chỉ cần tìm ra 1 trường hợp là hk phải rồi
VD : 11 : 4 = 2, R = 3
Mà 11 hk phải là số chính phương
CHÚC BẠN HỌC GIỎI NHÉ
(\(AB+BC+CA=0\), đúng không nhỉ?)
Ta có \(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC-AB-AC}=\frac{-1}{\left(A-B\right)\left(C-A\right)}\).
Làm tương tự rồi quy đồng mẫu được \(A=0\).
Từ \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=0\left(ABC\ne0\right)\), ta có:
\(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{BC}{ABC}+\frac{AC}{ABC}+\frac{AB}{ABC}=\frac{BC+AC+AB}{ABC}=0\).
Suy ra \(BC+AC+AB=0\).
Từ đó ta có:
\(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC+BC}=\frac{1}{A^2+BC-AC-AB}\)\(=\frac{1}{A\left(A-C\right)-B\left(A-C\right)}=\frac{1}{\left(A-B\right)\left(A-C\right)}\).Tương tự \(\frac{1}{B^2+2CA}=\frac{1}{\left(A-B\right)\left(C-B\right)}\), \(\frac{1}{C^2+2AB}=\frac{1}{\left(C-A\right)\left(C-B\right)}\).
Do đó:
\(\frac{1}{A^2+2BC}+\frac{1}{B^2+2CA}+\frac{1}{C^2+2AB}=\frac{1}{\left(A-B\right)\left(A-C\right)}+\)\(\frac{1}{\left(A-B\right)\left(C-B\right)}+\frac{1}{\left(C-A\right)\left(C-B\right)}\)
\(=\frac{B-C-\left(A-C\right)+A-B}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=\frac{0}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=0\).
Nhớ rằng \(\left(A+2009\right)!=\left(A+2009\right)\left(A+2008\right)!\).
Thu gọn thì được \(P=\frac{1+A+2009}{1-\left(A+2009\right)}=-\frac{A+2010}{A+2008}\)
\(\frac{\left(A+2008\right)+\left(A+2009\right)}{\left(A+2008\right)-\left(A+2009\right)}\)
\(=\frac{2A+4017}{-1}\)
\(=-2A-4017\)
("Công thức" quan trọng: Nhắc đến tổng các chữ số là nhắc đến modulo 9.)
Tổng các chữ số của một số bất kì sẽ đồng dư với chính số đó (mod 9).
VD: 37 đồng dư 3+7=10 (mod 9).
Giả sử tồn tại số thoả đề.
Số chính phương chia 9 dư \(0,1,4,7\).
Mà số này lại đồng dư 2019 (mod 9) nghĩa là đồng dư 3 (mod 9) nên vô lí.
\(b+2c=3\), đúng không ta?
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50