K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem

7 tháng 6 2021

Gọi vận tốc của xe máy là x (km/h), xe đạp y (km/h) (x,y>0)

40 phút = \(\frac{2}{3}\)giờ

Quãng đường xe máy đi là \(\frac{2}{3}\times x\)

Quãng đường xe đạp đi là \(\frac{2}{3}\times y\)

Vì họ gặp nhau nếu đi ngược chiều nên:

\(\frac{2}{3}\times x+\frac{2}{3}\times y=30\)

\(\Rightarrow x+y=45\left(1\right)\)

Nếu đi cùng chiều thì sau 2h xe máy đuổi kịp xe đạp nên ta có:

\(2x-2y=AB=30\)

\(\Rightarrow x-y=15\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x+y=45\\x-y=15\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=15\end{cases}}}\)

Vậy vận tốc mỗi xe là 30 km/h và 15 km/h

7 tháng 6 2021

*Đừng nói em cop bạn ý :(

7 tháng 6 2021

G/s điểm cố định đó là \(\left(x_0;y_0\right)\) nên khi đó:
\(y_0=\left(m-2\right)x_0+2\) (với mọi m)

\(\Leftrightarrow mx_0-2x_0+2-y_0=0\) (với mọi m)

\(\Leftrightarrow mx_0-\left(2x_0+y_0-2\right)=0\) (với mọi m)

\(\Rightarrow\hept{\begin{cases}x_0=0\\2x_0+y_0-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_0=0\\y_0=2\end{cases}}\)

=> đcđ đó là (0;2)

8 tháng 6 2021

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)

Theo đề bài:

\(a+b+3ab=1\)

\(\Leftrightarrow4\left(a+b\right)+12ab=4\)

\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)

\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)

\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)

\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)

\(\Leftrightarrow a+b\ge\frac{2}{3}\)

`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)

Áp dụng các kết quả trên, ta có:

\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)

\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)

Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)

\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)

Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\) ĐK : \(x\ge0;x\ne1\)

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}+3}\)   

\(=\frac{3\sqrt{x}+1-2\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

\(\sqrt{11+2\sqrt{18}}=\sqrt{11+2\sqrt{9.2}}\)

\(=\sqrt{\left(\sqrt{9}\right)^2+2\sqrt{9.2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{9}+\sqrt{2}\right)^2}=\left|\sqrt{9}+\sqrt{2}\right|=\sqrt{9}+\sqrt{2}\)

7 tháng 6 2021

Ta có: \(P=-\left(b\sqrt{a}-2a\sqrt{b}+a\sqrt{a}\right)+a\sqrt{a}=-\left(\sqrt{b+\sqrt{a}}-\sqrt{a+\sqrt{a}}\right)^2+a\sqrt{a}\)

           \(\le a\sqrt{a}\le1\)

Dấu "=" xảy ra khi a=b=1 

Mình làm thế này không biết có đúng ko mn