Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D, E chia tam giác thành hai phần có diện tích bằng nhau. Tỷ số\(\frac{AD}{AB}\) bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)
\(=\left(2017^2-2016^2\right)+...+\left(3^2-2^2\right)+1^2\)
\(=\left(2017-2016\right)\left(2017+2016\right)+...+\left(3-2\right)\left(3+2\right)+1\)
\(=2017+2016+...+3+2+1\)
\(=\frac{2017\cdot\left(2017+1\right)}{2}=2035153\)
@ thanhtinh không được cũng phải cố cho nó được chứ:
\(a^2-b^2=90\Rightarrow a^2+b^2=90+2b^2\)
Lấy kết luận cua @thanhtinh là: không thấy b=>theo tính chất giao hoán=> b thấy không => b=0
Vậy \(a^2+b^2=90\)
chỉ có thuyền mới hiểu....
Cân bằng phương trình VĂN-TOÁN
"Nếu em là thuyền thì Anh xin là biển lớn"\(\Leftrightarrow\)"Nếu em là thuyền, Thì Anh vẫn là ...Anh"
a2 - b2 = 90 <=> (a - b)(a + b) = 90 => a + b và a - b là 2 ước của 90.
ĐK :- \(a,b\ge1\Rightarrow a+b\ge2\)
- (a + b) - (a - b) = 2b (chẵn) => a + b và a - b cùng tính chẵn lẻ mà (a + b)(a - b) = 90 (chẵn) => a + b ; a - b cùng chẵn
Tuy nhiên,khi phân tích 90 ra thừa số nguyên tố,số mũ của thừa số 2 nhỏ hơn 2 (90 = 2.32.5) nên a + b và a - b không thể cùng chẵn
Vậy giá trị của a - b ; a + b ; a ; b và a2 + b2 đều không tìm được.
Ta có: \(\left(3x^8-2x^6+x^5+2x-x^2+1\right)^5=a_0+a_1x+...+a_{40}x^{40}\)
Từ khai triển này ta thay x = 1 vào thì được
\(a_0+a_1+...+a_{40}=\left(3-2+1+2-1+1\right)^5=4^5=1024\)
A D E B C
SADE = SDEBC (gt) =>\(\frac{S_{ADE}}{S_{ABC}}=\frac{1}{2}\)
\(\Delta ADE,\Delta ABE\)có chung đường cao hạ từ E nên\(\frac{S_{ADE}}{S_{ABE}}=\frac{AD}{AB}\)
\(\Delta ABE,\Delta ABC\)có chung đường cao hạ từ B nên\(\frac{S_{ABE}}{S_{ABC}}=\frac{AE}{AC}\)
\(\Rightarrow\frac{S_{ADE}}{S_{ABE}}.\frac{S_{ABE}}{S_{ABC}}=\frac{AD}{AB}.\frac{AE}{AC}\).
\(\Delta ABC\)có DE // BC nên\(\frac{AD}{AB}=\frac{AE}{AC}\)(định lí Ta-let).Suy ra\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2\Rightarrow\frac{AD}{AB}=\frac{1}{\sqrt{2}}\)