Giải các pt sau:
a, \(\sqrt{2}\left(x^2+8\right)=5\left(x^3+8\right)\)
b, \(\sqrt{5-3x}+\sqrt{x+1}=\sqrt{3x^2-4x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{25-4\sqrt{6}}=\sqrt{25-2.2\sqrt{6}}\)
\(=\sqrt{\left(2\sqrt{6}\right)^2-2.2\sqrt{6}+1}=\sqrt{\left(2\sqrt{6}-1\right)^2}\)
\(=\left|2\sqrt{6}-1\right|=2\sqrt{6}-1\)vì \(2\sqrt{6}-1>0\)
√25−4√6
=√24−4√6+1
=√(2√6)2−2.2√6.1+12
=√(2√6−1)2=
2√6−1
\(\sqrt{14-2\sqrt{33}}=\sqrt{11-2.\sqrt{11}.\sqrt{3}+3}=\sqrt{\left(\sqrt{11}\right)^2-2\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\left|\sqrt{11}-\sqrt{3}\right|=\sqrt{11}-\sqrt{3}\)
√12−2√35=?√4+√15=?
(3−√2)√11+6√2=?
(√5+√7)√12−2√35=?
√7−2√10−√7+2√10=?
√13−√160+√53+4√90
\(\sqrt{12-2\sqrt{35}}=\sqrt{12-2\sqrt{7.5}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2\sqrt{7.5}+\left(\sqrt{2}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{2}\right|=\sqrt{7}-\sqrt{2}\)vì \(\sqrt{7}-\sqrt{2}>0\)
\(\sqrt{16-2\sqrt{55}}=\sqrt{16-2\sqrt{11.5}}\)
\(=\sqrt{\left(\sqrt{11}\right)^2-2\sqrt{11.5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{5}\right|=\sqrt{11}-\sqrt{5}\)vì \(\sqrt{11}-\sqrt{5}>0\)
√16−2√55=√11−2√11⋅5+516−255=11−211⋅5+5
=√(√11−√5)2=√11−√5
đây nhé
a/ Để (1) qua A
⇒1.m+1=4⇒m=3⇒1.m+1=4⇒m=3
⇒y=3x+1⇒y=3x+1
Hàm số đồng biến trên R
b/ x+y+3=0⇔y=−x−3x+y+3=0⇔y=−x−3
Do (1) song song (d) nên chúng có hệ số góc bằng nhau
⇒m=−1
y2 + 3y = x4 + x2 + 18
<=> 4y2 + 12y = 4x4 + 4x2 + 72
<=> 4y2 + 12y + 9 = 4x4 + 4x2 + 1 + 80
<=> (2y + 3)2 = (2x2 + 1)2 = 80
<=> (2x2 + 1 + 2y + 3)(2y + 3 - 2x2 - 1) = 80
<=> (2x2 + 2y + 4)(-2x2 + 2y + 2) = 80
<=> (x2 + y + 2)(-x2 + y + 1) = 20
Lập bảng xét các trường hợp
x2 + y + 2 | 1 | 20 | -20 | -1 | 4 | 5 | -5 | -4 | 2 | 10 | -2 | -10 |
-x2 + y + 1 | 20 | 1 | -1 | -20 | 5 | 4 | -4 | -5 | 10 | 2 | -10 | -2 |
x | | | \(\pm3\) | | | \(\pm3\) | | | 0 | | | 0 | ||||
y | 9 | 9 | -12 | -12 | 3 | 3 | -6 | -6 | | | | | | | | |
Vậy các cặp (x;y) thỏa mãn là (-3 ; 9) ; (3;9) ; (-3 ; -12) ; (3;-12) ; (0;3) ; (0;-6)
Để phương trình có hai nghiệm phân biệt \(x_1,x_2\)thì
\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1=m^2+\left(m-1\right)^2>0,\forall m\inℝ\)
Áp dụng định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=4m-m^2\end{cases}}\)
\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(2m+2\right)^2-4\left(4m-m^2\right)}\)
\(=\sqrt{8m^2-8m+4}=\sqrt{2\left(2m-1\right)^2+2}\ge\sqrt{2}\)
Dấu \(=\)khi \(2m-1=0\Leftrightarrow m=\frac{1}{2}\).
\(\sqrt{122}>\sqrt{121}=11=9+2=\sqrt{81}+2>\sqrt{80}+2\)
\(\sqrt{80}< \sqrt{81}=9=5+4=\sqrt{25}+4< \sqrt{26}+4\)