Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy các điểm E và F sao cho AE + AF = AB. Gọi M là trung điểm của EF. Chứng minh rằng M luôn đi qua một điểm cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Văn bản mẹ tôi có mẹ xuất hiện quánh con
- Văn bản cổng trường mở ra thì ngược lại
ta có: f(x) = x4 + 2x2 - 2x2 - 6x - x4 + 2x2 - x3 + 8x -x3 - 2
f(x) = (x4 - x4) + (2x2 + 2x2 -2x2) + (8x-6x) - (x3 + x3 ) - 2
f(x) = 2x2 + 2x - 2x3 - 2 = 2x2- 2x3 + 2x - 2
Để f(x) = 0
=> 2x2 - 2x3 + 2x - 2 = 0
2x2.(x-1) + 2.(x-1) = 0
(x-1).(2x2+2) = 0
=> x - 1 = 0 => x = 1
2x2 + 2 = 0 => 2x2 = -2 => x2 = - 1 => không tìm được x
KL:...
\(3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^3}\)
\(=\frac{3^2}{3^3}\cdot\frac{81\cdot81}{81\cdot3}\)
\(=\frac{1}{3}\cdot\frac{27}{1}\)
\(=9=\left(\pm3\right)^2\)
\(a,3^2\cdot\frac{1}{243}=3^2\cdot\frac{1}{3^5}=\frac{1}{3^3}=\frac{1^3}{3^3}=\left(\frac{1}{3}\right)^3\)
\(b,81^2\cdot\frac{1}{3^3}=\left(3^4\right)^2\cdot\frac{1}{3^3}=3^8\cdot\frac{1}{3^3}=3^5\)
a) \(3^2.\frac{1}{243}=\frac{1.3^3}{243}=\frac{3^2}{243}=\frac{3^2}{3^5}=\frac{1}{3^3}=\frac{1}{27}\)
b) \(81^2.\frac{1}{3^3}=\frac{1.81^2}{3^3}=\frac{81^2}{3^3}=\frac{3^8}{3^3}=3^5=243\)