cho 0=<a,b,c thỏa a+b+c=\(\frac{1}{abc}\)rút gọn P=\(\sqrt{\frac{\left(1+b^2c^2\right)+\left(1+c^2a^2\right)}{c^2+a^2b^2c^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-2x+4}+1\)
\(=\sqrt{x^2-2x+1+3}+1\)
\(=\sqrt{\left(x-1\right)^2+3}+1\)
Có
\(\left(x-1\right)^2+3\ge3\forall x\)
\(\sqrt{\left(x-1\right)^2+3}\ge\sqrt{3}\)
\(\sqrt{\left(x-1\right)^2+3}+1\ge\sqrt{3}+1\)
Dấu = xảy ra khi và chỉ khi
x - 1 = 0
x = 1
Vậy min = \(\sqrt{3}+1\) khi và chỉ khi x = 1
a, A xác định khi : \(-1\le x\le1\)
\(=\frac{\sqrt{\frac{\left(\sqrt{1-x}-\sqrt{1+x}\right)^2}{2}}.\left[\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2-\sqrt{1-x^2}\right)\right]}{2-\sqrt{1-x^2}}\)
\(=\frac{\left|\sqrt{1-x}-\sqrt{1+x}\right|.\left(\sqrt{1+x}+\sqrt{1-x}\right)}{\sqrt{2}}=\hept{\begin{cases}\sqrt{2x}khi0\le x\le1\\-\sqrt{2x}khi-1\le x\le0\end{cases}}\)
b, \(A\ge\frac{1}{2}\)
Khi \(0\le x\le1\)thì \(\sqrt{2x}\ge\frac{1}{2}\Leftrightarrow x\ge\frac{1}{2\sqrt{2}}\)
Khi \(-1\le x\le0\)thì \(-\sqrt{2x}\ge\frac{1}{2}\Leftrightarrow x\le-\frac{1}{2\sqrt{2}}\)
Vậy \(A\ge\frac{1}{2}\)\(\Leftrightarrow-1\le x\le-\frac{1}{2\sqrt{2}}\)hoặc \(\frac{1}{2\sqrt{2}}\le x\le1\)
\(sin63^o=cos\left(90^o-63^o\right)=cos27^o\)
\(cos78^o=sin\left(90^o-78^o\right)=sin12^o\)
\(tan53^o=cot\left(90^o-53^o\right)=cot37^o\)
\(cot68^o=tan\left(90^o-68^o\right)=tan22^o\)
a, \(A=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{1-x}\)ĐK : \(x\ne0;x\ge0\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\frac{2}{1-x}\)
\(=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\frac{2}{1-x}\)
\(=\left(\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x-1}{-2}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
b, Thay \(x=\frac{9}{25}\Rightarrow\sqrt{x}=\frac{3}{5}\)vào biểu thức A ta được :
\(\frac{\frac{3}{5}}{\frac{3}{5}+1}=\frac{\frac{3}{5}}{\frac{8}{5}}=\frac{3}{8}\)Vậy với x = 9/25 thì A = 3/8
c, Để A nguyên khi : \(\sqrt{x}⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1-1⋮\sqrt{x}+1\Leftrightarrow-1⋮\sqrt{x}+1\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)
\(\sqrt{x}+1\) | 1 | -1 |
\(\sqrt{x}\) | 0 | -2 |
x | 0 | loại |
Kết hợp với gt \(x\inℤ\)=> x = 0 ( tm ) thì A nguyên
a,ĐK:x≠4;x>0
b,A=(1√x+2+1√x−21x+2+1x−2)*√x−2√xx−2x
=x−4(√x−2)(√x+2)x−4(x−2)(x+2)*√x−2√xx−2x
=√x−2√xx−2x
Để A>1212thì√x−2√xx−2x>1212
⇔√x−42√xx−42x>0
⇔√x−4>0(2√x>0)x−4>0(2x>0)
⇔ x>16(tm)
Để A>1212thì 0<x>16và x≠4
\(ĐKXĐ:x\ne1;x\ge0\)
\(A=\frac{2+\sqrt{x}+2\left(\sqrt{x}-1\right)}{x-1}:\frac{3}{\sqrt{x}+x}\)
\(A=\frac{2+\sqrt{x}+2\sqrt{x}-2}{x-1}.\frac{x+\sqrt{x}}{3}\)
\(A=\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{3}\)
\(A=\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}-1}\)
\(A=\frac{x}{\sqrt{x}-1}\)
\(b,A=\frac{\frac{4}{9}}{\sqrt{\frac{4}{9}}-1}\)
\(A=\frac{\frac{4}{9}}{\frac{2}{3}-1}=-\frac{4}{3}\)
\(c,\frac{x}{\sqrt{x}-1}\)
\(A=\frac{\left(\sqrt{x}-1\right)^2+2\sqrt{x}-1}{\sqrt{x}-1}\)
\(A=\sqrt{x-1}+\frac{2\left(\sqrt{x}-1\right)+1}{\sqrt{x}-1}\)
\(A=\sqrt{x-1}+2+\frac{1}{\sqrt{x}-1}\)
áp dụng bđt cô-si
\(\sqrt{x-1}+\frac{1}{\sqrt{x}-1}\ge2\sqrt{x-1.\frac{1}{\sqrt{x}-1}}=2\)
\(A\ge2+2=4\)
\(MIN:A=4\)
dấu "=" xảy ra khi và chỉ khi \(x-1=\frac{1}{x-1}\)
\(< =>\left(\sqrt{x}-1\right)^2=1\)
\(\orbr{\begin{cases}\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{cases}< =>\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=0\end{cases}}}\)
\(\orbr{\begin{cases}x=4\left(TM\right)\\x=0\left(KTM\right)\end{cases}}\)
\(\frac{18}{\sqrt{7}-1}=\frac{18\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}=\frac{18\left(\sqrt{7}+1\right)}{7-1}=3\sqrt{7}+3\)
Bài này dùng bđt phụ dạng \(\frac{1}{n+n_1+n_2+...+n_m}\le\frac{1}{m^2}\left(\frac{1}{n}+\frac{1}{n_1}+\frac{1}{n_2}+...+\frac{1}{n_m}\right)\)với m = 12
nhưng bị thiếu mất giả thiết rồi:(
\(q,\frac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(\frac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}\)
\(\frac{-2}{\sqrt{2}}\)
\(-\sqrt{2}\)
\(s,\sqrt{5-\sqrt{\left(2\sqrt{3}^2\right)+4\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}^2\right)+4\sqrt{3}+1}}\)
\(\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)
\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\sqrt{3}-1+\sqrt{3}+1\)
\(2\sqrt{3}\)
s , \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
Đề có đoạn sai mình sửa nhé
Ta có: \(a+b+c=\frac{1}{abc}\Rightarrow abc\left(a+b+c\right)=1\)
Lại có: \(1+b^2c^2=abc\left(a+b+c\right)+b^2c^2=bc\left(a^2+ab+ca+bc\right)=bc\left(a+b\right)\left(a+c\right)\)
Tương tự: \(\hept{\begin{cases}1+c^2a^2=ca\left(b+c\right)\left(a+b\right)\\1+a^2b^2=ab\left(c+a\right)\left(b+c\right)\end{cases}}\)
Khi đó: \(P=\sqrt{\frac{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}{c^2\left(1+a^2b^2\right)}}=\sqrt{\frac{bc\left(a+b\right)\left(a+c\right)\cdot ca\left(b+c\right)\left(b+a\right)}{abc^2\left(c+a\right)\left(c+b\right)}}\)
\(=\sqrt{\left(a+b\right)^2}=\left|a+b\right|=a+b\) vì \(a,b\ge0\)