căn bậc hai(25 -20*x+4*x^2) + 2*x = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{9x^2}=6\Leftrightarrow\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b) \(\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\Leftrightarrow\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
c) \(\sqrt{x^2-6x+9}=3\Leftrightarrow\left|x-3\right|=3\Leftrightarrow\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
d) \(\sqrt{x^2+4x+4}-2x=3\Leftrightarrow\left|x+2\right|=2x+3\Leftrightarrow\orbr{\begin{cases}x+2=2x+3\\x+2=-2x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\3x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{5}{3}\end{cases}}\)
\(a,\sqrt{9x^2}=6\)
\(\sqrt{\left(3x\right)^2}=6\)
\(\left|3x\right|=6\)
\(< =>x=\pm2\)
\(\sqrt{\left(x-2\right)^2}=5\)
\(\left|x-2\right|=5\)
\(\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
\(c,\sqrt{x^2-6x+9}=3\)
\(\sqrt{\left(x-3\right)^2}=3\)
\(\left|x-3\right|=3\)
\(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}\orbr{\begin{cases}x=6\\x=0\end{cases}}}\)
\(d,\sqrt{x^2+4x+4}-2x=3\)
\(\sqrt{\left(x+2\right)^2}=3+2x\)
\(\left|x+2\right|=3+2x\)
dạng 3 của trị tuyệt đối
xét \(3+2x\ge0\)
\(x\ge-\frac{3}{2}\)
\(\orbr{\begin{cases}x+2=3+2x\\x+2=-3-2x\end{cases}\orbr{\begin{cases}x=-1\\-\frac{5}{3}\end{cases}}}\)
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(=2\cdot3^3+2\cdot2^2-4\cdot2^3=30\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(=2-\sqrt{2}+3-\sqrt{2}=5-2\sqrt{2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=3-\sqrt{3}-1-\sqrt{3}=2-2\sqrt{3}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}=5+\sqrt{6}\)
\(E=\sqrt{17^2}-8^2+\sqrt{3^2+4^2}=17-64+5=-42\)
\(A=2\sqrt{\left(-3^3\right)^2}+2\sqrt{\left(-2^2\right)^2}-4\sqrt{\left(-2^3\right)^2}\)
\(A=2\left|-3^3\right|+2\left|-2^2\right|-4\left|-2^3\right|\)
\(2.27+2.4-4.8\)
\(A=30\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|\)
\(B=2-\sqrt{2}+3-\sqrt{2}\)
\(B=5-2\sqrt{2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|\)
\(C=3-\sqrt{3}-1-\sqrt{3}\)
\(C=2-2\sqrt{3}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}\)
\(D=5+\sqrt{6}\)
\(E=\sqrt{17^2}-8^2-\sqrt{3^2+4^2}\)
\(E=17-64-\sqrt{25}=17-64-5=-52\)
Ta có: \(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[\frac{3\left(6-1\right)}{\sqrt{6}+1}+\frac{2\left(6-4\right)}{\sqrt{6}-2}-\frac{4\left(9-6\right)}{3-\sqrt{6}}\right]\left(\sqrt{6}+11\right)\)
\(=\left[3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)=6-121=-115\)
a) \(2x-4\ge0\Rightarrow x\ge2\)
b) \(-2x+1>0\Rightarrow x< \frac{1}{2}\)
c) \(-3x+5\le0\Rightarrow x\ge\frac{5}{3}\)
d) \(-2x+6\le0\Rightarrow x\ge3\)
e) \(x-3\ge0\Rightarrow x\ge3\)
f) \(-x+2\ge0\Rightarrow x\le2\)
\(a,\sqrt{2x-4}\ge0\)
\(2x-4\ge0\)
\(x\ge2\)để biểu thức ĐXĐ
\(b,\sqrt{\frac{3}{-2x+1}}\ge0\)
\(\frac{3}{-2x+1}\ge0\)
\(< =>-2x+1\ge0;-2x+1\ne0< =>-2x+1>0\)
\(x< \frac{1}{2}\)
\(c,\sqrt{\frac{-3x+5}{-4}}\ge0\)
\(-3x+5\le0\)
\(x\ge\frac{5}{3}\)
mấy câu khác tương tự
a) đk: \(\hept{\begin{cases}x\ge1\\x\ne3\end{cases}}\)
\(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-1\right)-2}{\sqrt{x-1}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
b) \(x=4\left(2-\sqrt{3}\right)\Rightarrow x-1=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
\(\Rightarrow P=\sqrt{x-1}+\sqrt{2}=2-\sqrt{3}+\sqrt{2}\)
đk: \(x\le\frac{5}{2}\)
Ta có: \(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}=5-2x\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=5-2x\\5-2x=2x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x=0\\4x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0