K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

2 = (x + 3)(x - 3) - (x + 2)(x - 1) = x2 - 32 - (x2 - x + 2x - 2) = -7 - x => x = -7 - 2 = -9

13 tháng 10 2016

Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)

Theo đề bài ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)

\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)

27 tháng 1 2020

Theo đề ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) nên:

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\left(a+b+c\right).1\)

Và: \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

Từ trên ta suy ra: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

16 tháng 2 2021

Ta có: \(x=2013\Leftrightarrow x+1=2014\)

Thay vào ta được

\(C=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(C=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)

\(C=1\)

Vậy C = 1

13 tháng 10 2016

\(=\frac{1}{3^{2017}}.3^{2016}.3.7=\frac{3^{2017}.7}{3^{2017}}=7\)

13 tháng 10 2016

lấy máy tính tính chứ

13 tháng 10 2016

\(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=4.9\Rightarrow\)\(x^2=36\)

Do: x > 0   => x = 6

13 tháng 10 2016

\(\frac{x}{4}=\frac{9}{x}\)=> x .x = 9 . 4

                     => x2 = 36 => x = 6 hoặc x = - 6

                          Mà x>0 =>x = 6

13 tháng 10 2016

a/ Xét tứ giác AEHF

HE vuông góc AB; AF vuông góc AB => HE//AF

AE vuông góc AC; HF vuông góc AC => AE//HH

=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1)

Mà ^BAC=90

=> AEHF là HCN => AH=EF (hai đường chéo HCN = nhau)

b/ Gọi O là giao của AH và EF

+ Xét tg vuông HCF có IH=IC => IF=IH (Trung tuyến thuộc cạnh huyền băng nửa cạnh huyền)

=> tg IHF cân tại I => ^IHF=^HFI (1)

+ Ta có AH=EF (cmt) và OA=OH; OE=OF (trong HCN các đường chéo cắt nhau tại trung điểm môic đường => OH=OF

=> tg OHF cân tại O => ^OHF=^OFH (2)

+ Mà ^IHF+^OHF=^AHC=90 (3)

=> ^HFI+^OFH=^EFI=90 => EF vuông góc với FI