Tìm GTNN
a) x2-2x+5
b) 2x2+10x-1
Tìm GTLN
a) -4x2+4x+2016
b) -2x2+2x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 0<a<b<c. Theo đề bài
\(\overline{abc}+\overline{acb}=200a+11b+11c=499\)
\(\Rightarrow11\left(a+b+c\right)=499-189a=495+4-187a-2a\)
\(\Rightarrow11\left(a+b+c\right)=45.11-17.11.a+\left(4-2a\right)\)
\(11\left(a+b+c\right)⋮11\Rightarrow145.11+17.11.a+4-2a⋮11\)
\(\Rightarrow4-2a⋮11\Rightarrow a=2\) Thay a=2 vào biểu thức
\(11\left(a+b+c\right)=499-189a\Rightarrow a+b+c=11\)
y^6-x^6=(y^3-x^3)(y^3+x^3)=(y-x)(y^2+xy+x^2)(x+y)(x^2-xy+y^2)
5y^6-5x^6
=5(y^6-x^6)
=5(y^4+x^4)(y^4-x^4)
=5(y^4+x^4)(y^2+x^2)(y^2-x^2)
=5(y^4+x^4)(y^2+x^2)(y-x)(y+x)
tìm GTNN:
a) \(x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x-2\right)^2+1\ge1\)
vậy GTNN của biểu thức trên =1 khi x=2
a) Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
=> (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là 4 khi x = 1