Số gì nhỏ hơn 4 lớn hơn 3 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DK: x>=0
Ta co VT=(x2-x+1/4) +(x-\(\sqrt{x}\) +1/4)
=(x-1/2)2+(\(\sqrt{x}\)--1/2)2 >=0 voi x>=0
den day co 2 cach de giai tiep
1. ban hay xet X>=1/2==> DPCM va 1/2>x>=0 ==>DPCM
2. giai phuong trinh tren cho VT=0 ban duoc ket qua vo nghiem nghia la vt khong co gia tri nao cua x de =0 tuc la vt>0 ==>DPCM
khi bình phương đã tới một điểm nhất định thì ta phải căn ra để quy ước ở đây ta có 7+4 can3 suy ra bình phương đặt phải lấy công thức ms quý 7+4+3 về n+ghvay 1trenve
VT = \(\sqrt{\left(2+\sqrt{3}\right)^2}\)+\(\sqrt{\left(2-\sqrt{3}\right)^2}\)= (2 + \(\sqrt{3}\)) + (2 - \(\sqrt{3}\)) = 4
Ta có:(Sử dụng bdt cô-si) \(\frac{bc}{a^2b+a^2c}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)
=> \(\frac{bc}{a^2b+a^2c}\ge\frac{1}{a}-\frac{b+c}{4bc}\)
Chứng minh tương tự:\(\frac{ca}{b^2a+b^2c}\ge\frac{1}{b}-\frac{c+a}{4ca}\);\(\frac{ab}{c^2a+c^2b}\ge\frac{1}{c}-\frac{a+b}{4ab}\)
Từ đó \(P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\right)\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)=> \(P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge9\)(do a+b+c<=1)=> \(P\ge\frac{1}{2}.9=\frac{9}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a+b+c=1\\\frac{bc}{a^2b+a^2c}=\frac{b+c}{4bc}\\a,b,c>0\end{cases}};...\)
<=> \(a=b=c=\frac{1}{3}\)
Vậy\(MinP=\frac{9}{2}\)khi a=b=c=1/3
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$ với $a,b,c$ là số tự nhiên có 1 chữ số, $a>0$. Theo bài ra ta có:
$2\overline{abc}=\overline{bca}+\overline{cab}$
$2(100a+10b+c)=100b+10c+a+100c+10a+b$
$200a+20b+20c=101b+110c+11a$
$189a=81b+90c$
$21a=9b+10c$
$10c=21a-9b\vdots 3\Rightarrow c\vdots 3$
$\Rightarrow c$ có thể là $0,3,6,9$
-----------------------------------------
Nếu $c=0$ thì $21a=9b\Rightarrow 7a=3b$
$\Rightarrow 3b\vdots 7\Rightarrow b\vdots 7\Rightarrow b=0$ hoặc $b=7$.
$b=0$ thì $a=0$ (vô lý - loại)
$b=7$ thì $a=3$. Số cần tìm là $370$
-------------------------------------------
Nếu $c=3$ thì $21a=9b+30$
$\Rightarrow 7a=3b+10< 3.10+10=40$
$\Rightarrow a\leq 5$
Mà $7a=3b+10> 10\Rightarrow a> 1$
Thử $a=2,3,4,5$ thấy $a=4; b=6$ thỏa mãn. Số cần tìm $463$
-------------------------------------------
Nếu $c=6$ thì $21a=9b+60$
$\Rightarrow 7a=3b+20\geq 20\Rightarrow a>2$
$7a=3b+20< 3.10+20=50\Rightarrow a\leq 7$
Thử $a=3,4,5,6,7$ thì $a=5; b=5$. Số cần tìm $556$
-------------------------------------------
Nếu $c=9$ thì $21a=9b+90$
$\Rightarrow 7a=3b+30\vdots 3\Rightarrow a\vdots 3$
$\Rightarrow a=3,6,9$. Thử thì $a=6; b=4$
Số cần tìm $649$
các số thập phân giữa 3 và 4
dốt thế,vậy mà ko biết