\(\sqrt[3]{x+2}+\sqrt[3]{5-x}=1\)
giải hộ tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(-3\le x\le\frac{13}{4}\)
Ta có: \(2\sqrt{x+3}+\sqrt{13-4x}=x^2+4x+2\)
<=> \(2\left(\sqrt{x+3}-2\right)+\left(\sqrt{13-4x}-3\right)-x^2-4x+5=0\)
<=> \(2\cdot\frac{x+3-4}{\sqrt{x+3}+2}+\frac{13-4x-9}{\sqrt{13-4x}+3}-\left(x-1\right)\left(x+5\right)=0\)
<=> \(2\cdot\frac{x-1}{\sqrt{x+3}+2}-\frac{4x-4}{\sqrt{13-4x}+3}-\left(x-1\right)\left(x+5\right)=0\)
<=> \(\left(x-1\right)\left(\frac{2}{\sqrt{x+3}+2}-\frac{4}{\sqrt{13-4x}+3}-x-5\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\\frac{2}{\sqrt{x+3}+2}-\frac{4}{\sqrt{13-4x}+3}-x-5=0\left(1\right)\end{cases}}\)
Do \(-3\le x\le\frac{13}{4}\)
=> \(\frac{2}{\sqrt{x+3}+2}\le1\); \(-\frac{4}{\sqrt{13-4x}+3}< 0\); \(-x-5< -\left(-3\right)-5=-2\)
=> \(\frac{2}{\sqrt{x+3}+2}-\frac{4}{\sqrt{13-4x}+3}-x-5< 1-2=-1< 0\)
=> pt (1) vô nghiệm
Vậy S = {1}
Cách 1:
\(\sqrt{4x-1}+\sqrt{4x^2-1}=1\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)+\sqrt{4x^2-1}=0\)
\(\Leftrightarrow\frac{4x-2}{\sqrt{4x-1}+1}+\sqrt{\left(2x-1\right)\left(2x+1\right)}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\frac{2\sqrt{2x-1}}{\sqrt{4x-1}+1}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x-1}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Cách 2:
Điều kiện: \(x\ge\frac{1}{2}\)
Ta có:
\(VT=\sqrt{4x-1}+\sqrt{4x^2-1}\ge\sqrt{4.\frac{1}{2}-1}+\sqrt{4.\left(\frac{1}{2}\right)^2-1}=1=VP\)
Dấu = xảy ra khi \(x=\frac{1}{2}\)
Đk: x \(\le\)2028
Ta có: \(\sqrt{2028-x}+\sqrt{2093-x}+\sqrt{2268-x}=29\)
<=> \(\sqrt{2028-x}-4+\sqrt{2093-x}-9+\sqrt{2268-x}-16=0\)
<=> \(\frac{2028-x-16}{\sqrt{2028-x}+4}+\frac{2093-x-81}{\sqrt{2093-x}+9}+\frac{2268-x-256}{\sqrt{2268-x}+16}=0\)
<=> \(\left(2012-x\right).\left(\frac{1}{\sqrt{2028-x}+4}+\frac{1}{\sqrt{2093-x}+9}+\frac{1}{\sqrt{2268-x}+16}\right)=0\)
<=> x = 2012 (tm)
\(4\sqrt{x+3}-\sqrt{x-1}=7\left(1\right)\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow4\sqrt{x+3}=7+\sqrt{x-1}\)
\(\Leftrightarrow16\left(x+3\right)=49+x-1+14\sqrt{x+1}\)
\(\Leftrightarrow15x=14\sqrt{x-1}\)\(\left(x\ge1\right)\)
\(\Leftrightarrow225x^2=196\left(x-1\right)\)
\(\Leftrightarrow225x^2-196x+196=0\)
\(\Delta=196^2-4.225.196< 0\)
\(\Rightarrow pt\)vô nghiệm
Vậy pt vô nghiệm.
\(9x^2-\left(3x+2\right)\sqrt{3x-1}+2=3x\left(1\right)\)\(\left(x\ge\frac{1}{3}\right)\)
Đặt \(\sqrt{3x-1}=a\ge0\)
\(\Rightarrow\hept{\begin{cases}3x=a^2+1\\3x+2=a^2+3\\3x-1=a^2\end{cases}}\)
Pt (1) \(\Leftrightarrow3x\left(3x-1\right)-\left(3x+2\right)\sqrt{3x-1}+2=0\)
\(\Leftrightarrow\left(a^2+1\right)a^2-\left(a^2+3\right)a+2=0\)
\(\Leftrightarrow a^3+a^2-a^3-3a+2=0\)
\(\Leftrightarrow a^2-3a+2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
TH1: a=1
\(\Rightarrow\sqrt{3x-1}=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow x=\frac{2}{3}\left(tm\right)\)
TH2: a=2
\(\Rightarrow\sqrt{3x-1}=2\)
\(\Leftrightarrow3x-1=4\)
\(\Leftrightarrow x=\frac{5}{3}\left(tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{\frac{2}{3};\frac{5}{3}\right\}\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x+2}=a\\\sqrt[3]{5-x}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=1\\a^3+b^3=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=1\\\left(a+b\right)\left(a^2-ab+b^2\right)=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=1\\a^2-ab+b^2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=1\\\left(a+b\right)^2-3ab=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=1\\1-3ab=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab=-2\end{cases}}\)
Làm nốt
Ta có: \(\sqrt[3]{x+2}+\sqrt[3]{5-x}=1\)
<=> \(x+2+5-x+3\sqrt[3]{\left(x+2\right)\left(5-x\right)}\left[\sqrt[3]{x+2}+\sqrt[3]{5-x}\right]=1\)
<=> \(7+3\sqrt[3]{\left(x+2\right)\left(5-x\right)}.1=1\)
<=> \(3\sqrt[3]{\left(x+2\right)\left(5-x\right)}=-6\)
<=> \(\sqrt[3]{\left(x+2\right)\left(5-x\right)}=-2\)
<=>\(3x+10-x^2=-8\)
<=> \(x^2-3x-18=0\)
<=> \(x^2-6x+3x-18=0\)
<=> \(\left(x-6\right)\left(x+3\right)=0\)
<=> \(\orbr{\begin{cases}x=6\\x=-3\end{cases}}\)