Cho: a,b,c,d,e khác 0;
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)
CM:\(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\frac{a}{c}\)
Nếu sai đề thì bảo mình tiếng nhé ! ''^_^''
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ :
Trên BC lấy \(I\) và \(K\) sao cho \(\widehat{BOI}=\widehat{COK}=30^o\)
Xét \(\Delta OMB\) Và \(\Delta OIB\) ta có :
\(\widehat{MOB}=\widehat{IOB}=30^o\)
BO là cạnh chung.
\(\widehat{MBO}=\widehat{IBO}\) ( trước tia phân giác )
\(\Leftrightarrow\Delta OMB=\Delta OIB\)
\(\Leftrightarrow MB=IB\) ( HAI CẠNH TƯƠNG TỰ)
Xét \(\Delta NOC\) Và \(\Delta KOC\) có :
Góc \(NOC=\) Góc \(KOC=30^o\)
OC là chung.
Góc \(DCO=KOC\) ( TRƯỚC TIA PHÂN GIÁC )
\(\Leftrightarrow\Delta NCO=\Delta KOC\)
\(\Leftrightarrow CN=CK\) ( 2 CẠNH TƯƠNG ỨNG )
Mà \(BC=BI+IK+KC=BM+IK+NC\)
\(\Leftrightarrow BE+CD< BC\)
\(\LeftrightarrowĐPCM\)
Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.
Đặt \(n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.
Vậy n không thể là số chính phương.
Từ đó suy ra n không thể có 17 ước số.
Ta thấy 17 là số nguyên tố, vậy để một số tự nhiên x có 17 ước số thì x có dạng \(x=t^{16}=\left(t^8\right)^2\), với t là số nguyên tố. Vậy x phải là số chính phương.
Đặt\( n=\left(x-1\right)^2+x+\left(x+1\right)^2=3x^2+2\). n có dạng 3k + 2.
Vậy n không thể là số chính phương.
Từ đó suy ra n không thể có 17 ước số.
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
gọi chung các số nguyên tố lớn hơn 2 hoặc 3 là p
p là số nguyên tố lớn hơn 2 và 3 nên khi chia p cho 6 sẽ xảy ra các trường hợp sau: p chia hết cho 6, p : 6 dư 1, p : 6 dư 2, p : 6 dư 3, p : 6 dư 4, p : 6 dư 5
=> p sẽ có các dạng sau: 6m; 6m + 1; 6m + 2; 6m + 3; 6m + 4; 6m +5 hay 6m - 1
Ta thấy: 6m chia hết cho 6; 6m + 2 và 6m + 4 chia hết cho 2; 6m + 3 chia hết cho 3; các dạng trên là hợp số
Mà p là số nguyên tố lơn hơn 2 và 3 => p chỉ có 1 trong 2 dạng : 6m + 1 và 6m - 1
Vậy các số nguyên tố lớn hơn 2 hoặc 3 đều có thể viết được dưới dạng 6m+1 hoặc 6m-1
Các số nguyên tố khác 2 và 3 có thể dạng:
6m+1
6m+2
6m+3
6m+4
6m+5
Thấy: 6m-1 cũng có dạng 6m+5
Vì 6m+2,6m+4 chia hết cho 2 nên bỏ
Vì 6m+3 chia hết cho 3 nên bỏ nốt
Còn 6m+1 và 6m +5 hay còn là 6m+1 và 6m-1
Từ đó ta có thể khẳng định: mọi số nguyên tố khác 2 và 3 đều có dạng 6m+1 hoặc 6m-1
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
\(\hept{\begin{cases}a\left(a+b+c\right)=-12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{cases}}\)
Cộng cả 3 phương trình với nhau vế theo vế được
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b+c\right)=6\\\left(a+b+c\right)=-6\end{cases}}\)
Với \(\left(a+b+c\right)=6\)thì
\(\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}\)
Với \(\left(a+b+c\right)=-6\)thì
\(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)
Giả sử rằng trong 44 số đã cho, không có hai số nào bằng nhau . Vai trò các số này bình đẳng nên ta giả sử \(a_1< a_2< ...< a_{44}\). Vì a1 , a2 ,..., a44 là các số nguyên dương nên ta có thể gọi \(a_1\ge2\), \(a_2\ge3\).... , \(a_{44}\ge45\)(Dễ thấy \(a_1=1\)thì không tồn tại các giá trị \(a_j\) \(\left(j=2,3,...,44\right)\)thỏa mãn đề bài)
Khi đó : \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{44}^2}\le\frac{1}{2^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)
Như vậy đẳng thức không xảy ra (vô lí) => điều giả sử sai.
Vậy trong 44 số đã cho tồn tại 2 số bằng nhau. (đpcm)
Tham khảo cách làm và đề sau:
Cho 2015 số nguyên dương a1;a2;...;a2016 thỏa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+....+\frac{1}{a_{2016}}=300\)
CMR:tồn tại ít nhất 2 số đã cho bằng nhau.
Giải
Giả sử trong 2016 sô đã cho ko có 2 số nào bằng nhau,ko mất tính tổng quát giả sử a1<a2<....<a2016
Vì a1,a2,....,a2016 đều là số nguyên dương nên ta suy ra \(a_1\ge1;a_2\ge2;...;a_{2016}\ge2016\)
Suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+....+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 30\)
Mâu thuẫn vs gt ->Giả sử sai
=>Trong 2016 số đã cho có ít nhất 2 số bằng nhau
Tổng 1 + 2 + .. + 9 = 9.(9 + 1)/2 = 45
Khi xóa hai chữ số bất kỳ (a, b) bằng hiệu của chúng (a - b hoặc b - a tùy theo a lớn hơn hay nhỏ b ) thì tổng trên sẽ giảm đi a + b và tăng thêm a -b (hoặc b - a).
=> Tổng trên sẽ giảm đi a + b - (a - b) = 2.b hoặc a + b - (b - a) = 2.a. Mà 2.a và 2.b luôn là số chẵn => Mỗi lần xóa 2 số bất kỳ và thay bằng hiệu thì Tổng ban đầu sẽ luôn giảm đi một số chẵn, mà tổng ban đầu là số lẻ (45) nên không thể trừ số 45 cho các số chẵn để được 0 được (vì 0 là số chẵn).
Vậy không có cách nào để có kết quả tổng = 0 được.
Tổng 1 + 2 + .. + 9 = 9.(9 + 1)/2 = 45
Khi xóa hai chữ số bất kỳ (a, b) bằng hiệu của chúng (a - b hoặc b - a tùy theo a lớn hơn hay nhỏ b ) thì tổng trên sẽ giảm đi a + b và tăng thêm a -b (hoặc b - a).
=> Tổng trên sẽ giảm đi a + b - (a - b) = 2.b hoặc a + b - (b - a) = 2.a. Mà 2.a và 2.b luôn là số chẵn => Mỗi lần xóa 2 số bất kỳ và thay bằng hiệu thì Tổng ban đầu sẽ luôn giảm đi một số chẵn, mà tổng ban đầu là số lẻ (45) nên không thể trừ số 45 cho các số chẵn để được 0 được (vì 0 là số chẵn).
Vậy không có cách nào để có kết quả tổng = 0 được.
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{2b^4}{2c^4}=\frac{2c^4}{2d^4}=\frac{2d^4}{2e^4}\)
Áp dụng tính chất dãy tỹ số bằng nhau ta có:
\(\frac{2a^4}{2b^4}=\frac{2b^4}{2c^4}=\frac{2c^4}{2d^4}=\frac{2d^4}{2e^4}=\frac{2a^4+2b^4+2c^4+2d^4}{2b^4+2c^4+2d^4+2e^4}\)
em nghĩ là c ghi sai đề :)
Sửa lai đề : Cho a;b;c;d;e khác 0
CM : \(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5c^4}=\frac{a}{e}\)
Giải :
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=k\)
\(\Rightarrow k^4=\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}\)
Áp dụng TC DTSBN ta được : \(k^4=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)(1)
Ta lại có : \(k^4=k.k.k.k=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}=\frac{a}{e}\) (2)
Từ (1) ; (2) => \(\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5c^4}=\frac{a}{e}\) (đpcm)