K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Giúp mik đi mik  tặng hẳn 3 k

30 tháng 7 2019

Áp dụng định lý 2 của đường trung bình trong hình thang

6 tháng 10 2021

rkutuyifisou2467909852

6 tháng 10 2021

tong 4 so chinh phuong le 1 la so chinh phuong

                                      2 ko la so chinh phuong 

tong 5 so chinh phuong le ko la so chinh phuong

11 tháng 9 2017

hơi khó đấy . bởi mik mới học lớp 6

12 tháng 9 2017

1/ Vẽ hình ...

2/Bài làm như sau:

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : SMNPQ=NQ22SMNPQ=NQ22

Mặt khác, ta luôn có : KQ+QN≥KNKQ+QN≥KN ⇒QN≥|KN−KQ|=12|c−a|⇒QN≥|KN−KQ|=12|c−a|

⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD

1 tháng 10 2020

a) Xét ∆ANE và ∆CNM có:

          ^ANE = ^CNM (đối đỉnh)

          AN = CN (gt)

          ^EAN = ^MCN (AE//MC, so le trong)

 Do đó ∆ANE = ∆CNM (g.c.g)

=> AE = CM (hai cạnh tương ứng)

Mà BM = CM (gt) nên AE = BM 

Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)

b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành

∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900 

Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)

c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)

∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)

=> AM = 8√3 (cm)

Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)

11 tháng 9 2021

848uti4urhurgyhurhfh9fue8gy7uyfhury

27 tháng 9 2019

\(\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)

\(=\left(x-3\right)\left(x-1-3\right)\)

\(=\left(x-3\right)\left(x-4\right)\)

27 tháng 9 2019

\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

6 tháng 10 2020

1) \(2x^3-8x=0\)

\(\Leftrightarrow2x\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

Vậy \(x\in\left\{0;\pm2\right\}\)

2) \(2x\left(x-15\right)-4\left(x-15\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(x-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)

Vậy \(x\in\left\{2;15\right\}\)

6 tháng 10 2020

\(2x^3-8x=0\)   

\(2x\left(x^2-4\right)=0\)   

\(\orbr{\begin{cases}2x=0\\x^2-4=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)    

\(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)   

\(2x\left(x-15\right)-4\left(x-15\right)=0\)    

\(\left(2x-4\right)\left(x-15\right)=0\)   

\(\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\)    

\(\orbr{\begin{cases}2x=4\\x=0+15\end{cases}}\)   

\(\orbr{\begin{cases}x=2\\x=15\end{cases}}\)

NM
3 tháng 9 2021

xét mọi số chính phương đều có thể viết dưới dạng :

\(\left(a\cdot n+b\right)^2\) với mọi số  \(a,b\) là các số tự nhiên và b nhở hơn n

mà ta có :

\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)

vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2

vậy n=2

3 tháng 9 2021

tự làm , ok

3 tháng 9 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) ok nha bạn

19 tháng 8 2017

hình như sai đề phải bn ???????????

3 tháng 10 2017

Ko sai đâu bạn đề thi HSG Toán Tỉnh Lâm Đồng đó!

DD
20 tháng 8 2021

\(4A=12x^2+12y^2+4z^2+20xy-12yz-12zx-8x-8y+12\)

\(=9x^2+9y^2+4z^2+18xy-12yz-12zx+2\left(x^2+y^2+4-4x-4y+2xy\right)+x^2+y^2-2xy+4\)

\(=\left(3x+3y-2z\right)^2+2\left(x+y-2\right)^2+\left(x-y\right)^2+4\ge4\)

Dấu \(=\)khi \(\hept{\begin{cases}3x+3y-2z=0\\x+y-2=0\\x-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=3\end{cases}}\).

Vậy \(minA=1\)khi \(x=y=1,z=3\).

\(A=3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{4}\left(x^2y^2+\frac{2}{3}xy-\frac{8}{3}x-\frac{8}{3}y\right)+3\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{4}[\left(x+\frac{y}{3}-\frac{4}{3}\right)^2+\frac{8}{9}y^2-\frac{16}{9}y-\frac{16}{9}]\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{y}[\left(x+\frac{y}{3}-\frac{4}{3}\right)^2+\frac{8}{9}\left(y-1\right)^2-\frac{2y}{9}]+3\)

\(=\left(z-\frac{3}{2}x-\frac{3}{2}y\right)^2+\frac{3}{y}[\left(x+\frac{y}{3}-\frac{4}{3}\right)^2+\frac{8}{9}\left(y-1\right)^2]+1\)

\(\Leftrightarrow A\ge1\Leftrightarrow MinA=1\)

Dấu '' = '' xảy ra khi:

\(\hept{\begin{cases}z-\frac{3}{2}x-\frac{3}{2}y=0\\y-1=0\\x+\frac{y}{3}-\frac{4}{3}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}z=0\\y=1\\x=1\end{cases}}\)