Một liên đội thiếu niên khi xếp thành hàng 8 , hàng 12 ,hàng 15 đều vừa đủ hàng . Tính số đội viên của liên đội ,biết rằng số đó trong khoảng từ 200 đến 500
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hi Annie,
I'm happy that you can study here next month.I have some information for you about our school.
Le Quy Don secondary school is a medium-sized school with about 600 students.It's on Quach Nhan Street,Xuong Giang Ward.Classes are from 7 a.m to 11 : 30 a.m.There are compulsory subjects maths,literature and English.Others are optional
I hope i will meet you soon,
Wee
nghĩa của câu này nhé
@tuichoitokne
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số ⇒ p = 60k + r = 22.3.5k + r với k,r ∈ N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số ⇒ chỉ có p = 109
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số $\Rightarrow$=> p = 60k + r = 22.3.5k + r với k,r $\in$\(\in\) N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số.$\Rightarrow$=> chỉ có p = 109
Vậy số nguyên tố phải tìm là 109.
Gọi p là số nguyên tố phải tìm.
Ta có: p chia cho 60 thì số dư là hợp số \(\Rightarrow\) p = 60k + r = 22.3.5k + r với k,r \(\in\) N ; 0 < r < 60 và r là hợp số.
Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.
Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A = {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}
Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}
Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}
Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.
Loại p = 169 = 132 là hợp số.\(\Rightarrow\) chỉ có p = 109
Vậy số nguyên tố phải tìm là 109.
Bài này mình tự làm nhá, mình xem ở trên mạng chưa có ai giải được bài này đâu, cũng không có ở trong câu hỏi tương tự nên các bạn khác đừng có bắt bẻ mình. Bài này hay và khó đấy nên bạn hỏi câu này, các bạn khác và O-L-M chọn đúng nha !
Do a;b;c và d là các số tự nhiên >0 =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số tự nhiên
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d
A > a+b+c+d/a+b+c+d
A > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2 (2)
Từ (1) và (2) => 1 < A < 2
=> A không phải số nguyên ( đpcm)
Gọi số cần tìm là a
Ta có: a chia 7 dư 4 nên ta đặt a=7k+4 nên a+3=7k+4+3=7k+7 chia hết cho 7 (1)
a chia 9 dư 6 nên ta đặt a=9m+6 nên a+3=9m+6+3=9m+9 chia hết cho 9 (2)
Từ (1) và (2) ta suy ra a+3 chia hết cho cả 7 và 9 mà (7,9)=1 nên a+3 chia hết cho 63
Nên a chia 63 dư 63-3=60
Bài 2 :
Ta có : (a,b)=18\(\Rightarrow\hept{\begin{cases}a⋮18\\b⋮18\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=18m\\b=18n\\\left(m,n\right)=1\end{cases}}\)
Mà a+b=162
\(\Rightarrow\)18m+18n=162
\(\Rightarrow\)18(m+n)=162
\(\Rightarrow\)m+n=9
Vì (m,n)=1 nên ta có bảng sau :
m | 1 | 8 | 2 | 7 | 4 | 5 |
n | 8 | 1 | 7 | 2 | 5 | 4 |
a | 18 | 144 | 36 | 126 | 72 | 90 |
b | 144 | 18 | 126 | 36 | 90 | 72 |
Vậy (a;b)\(\in\){(18;144);(144;18);(36;126);(126;36);(72;90);(90;72)}
Bài 1: Gọi số túi kẹo chia nhiều nhất là a (túi)
11 chia hết cho a, 12 chia hết cho a, a lớn nhất
suy ra a=UCLN(11,12)= 132
Vậy chia nhiều nhất 132 túi
Ta xét 10001 số: 2017; 20172; 20173 ; ...; 201710001
Theo Đi-rích-lê thế nào cũng có 2 số có cùng số dư trong phép chia cho 10000. Gọi 2 số đó là 2017m và 2017n (m,n là số tự nhiên khác 0) => 2017m - 2017n = ...0000 Vậy 2 lũy thừa của 2017 có 4 chữ số tận cùng giống nhau
BẤM ĐÚNG CHO TỚ NHA
khó @giải giúp mình bài này với
1]tính nhanh
a}7593-1997;b}79.99;c}13.8.3+60.2+7.24
8 = 2.2.2
12 = 2.2.3
15 = 3.5
bội nhỏ nhất là 2.2.2.3.5 = 120
vậy, số đội viên cần tìm thuộc {240; 360; 480}