Cho a, b, c là 3 số thực khác 0
\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)
Tính GTBT: B = \((1+\frac{b}{a}^a)\times(1\times\frac{a}{c})\times1+\frac{b}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMC và tam giác ABM ta có :
AM chung
AC = AB
BM = MC ( vì M là trung điểm )
^AMC = ^AMB ( 2 góc tương ứng )
Vì ^AMB = ^AMC (cmt)
Mà ^AMB + ^AMC = 180^0 ( 2 góc kề bù )
=)) ^AMB = ^AMC = 90^0
Vậy AM \(\perp\)BC (đpcm)
Xét ΔΔAMB và ΔΔAMC có:
AM chung
AB = AC (gt)
MB = MC (suy từ gt)
=> ΔΔAMB = ΔΔAMC (c.c.c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) ( hai góc tương ứng )
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do đó AM ⊥ BC.
\(\frac{x+y+z}{2}=\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=1\\2x=y+z-5\\2y=x+z+3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{4}{3}\\y=\frac{4}{3}\\z=1\end{cases}}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)
\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)
Do đó :
\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)
\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)
\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)
Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được :
\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~