Cho \(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}\)
(2006 dấu căn) (2006 dấu căn)
CM: 7<T<8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào đây Câu hỏi của Nguyễn Đình Thi - Toán lớp 9 - Học toán với OnlineMath
(2)
Đặt \(\sqrt{\text{x}}-\sqrt{y}=a\); \(\sqrt{y}-\sqrt{z}=b\); \(\sqrt{z}-\sqrt{x}=c\)
\(\Rightarrow a+b+c=0\). Ta sẽ chứng minh : \(a^3+b^3+c^3=3abc\)
Ta có : \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^3=-\left(b+c\right)^3\)
\(\Rightarrow a^3=-\left[b^3+c^3+3bc\left(b+c\right)\right]\Rightarrow a^3+b^3+c^3=-3bc\left(-a\right)=3abc\)
Mặt khác, ta lại có : \(a^3+b^3+c^3=0\left(gt\right)\Rightarrow3abc=0\Rightarrow abc=0\)
\(\Rightarrow a=0\)hoặc \(b=0\)hoặc \(c=0\)
Tu do de dang giai tiep bai toan!
Ta giải như sau:
\(pt\Leftrightarrow\frac{4\left(x^2+6\right)-8}{x^2+6}-\frac{3}{x^2+1}=\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
\(\Leftrightarrow4-\frac{8}{x^2+6}-\frac{3}{x^2+1}=\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
\(\Leftrightarrow\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}+\frac{8}{x^2+6}=4\)
Tới đay ta nhận thấy sự tương tự giữa tử và mẫu của các phân thức bên trái.
\(pt\Leftrightarrow\left(\frac{3}{x^2+1}-1\right)+\left(\frac{5}{x^2+3}-1\right)+\left(\frac{7}{x^2+5}-1\right)+\left(\frac{8}{x^2+6}-1\right)=0\)
\(\Leftrightarrow\frac{2-x^2}{x^2+1}+\frac{2-x^2}{x^2+3}+\frac{2-x^2}{x^2+5}+\frac{2-x^2}{x^2+6}=0\)
\(\Leftrightarrow\left(2-x^2\right)\left(\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}+\frac{1}{x^2+6}\right)=0\)
Do \(\left(\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}+\frac{1}{x^2+6}\right)\ne0\forall x\) nên pt tương đương \(2-x^2=0\Leftrightarrow x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)
Chúc em học tốt :)
Bài toán được giải trên tập số phức
x=-căn bậc hai(2), x=căn bậc hai(2); x = -căn bậc hai((8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-5*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59)/(2*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-5*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59)/(2*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = -căn bậc hai((căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)-59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)-59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = -căn bậc hai((-căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));x = căn bậc hai((-căn bậc hai(3)*i-1)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(2/3)-10*3^(3/2)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/3)+59*căn bậc hai(3)*i-59)/(2^(3/2)*3^(1/4)*(8*căn bậc hai(3023)*i+7*3^(5/2))^(1/6));
bạn vẽ hình ra
do ÈF là tiếp tuyến nên EF vuông góc AB nên góc BAD =90 \(\Rightarrow\)góc BAD + góc DAF =90 mà góc DAF + góc F = góc ADF=90( ADF chắn nửa đg tròn)
\(\Rightarrow\)góc BAD = góc F
lại có góc BAD = góc BCD( 2 góc nội tiếp cùng chắn cung BD)
góc F = góc BCD
mặt khác góc BCD + góc DCE =180( 2 góc kề bù)
\(\Rightarrow\)góc F + góc DCE =180 \(\Rightarrow\)tg CDFE nội tiếp
b) Aps dụng hệ thức lượng trong \(\Delta BEF\)có BAvuông góc EF ta có \(AB^2=EA\times AF\Rightarrow AB^4=EA^2\times AF^2vàBE\times BF=AB\times EF\)
Tương tự \(\Delta BAE\)có AC vuông góc BE ta có \(EA^2=CE\times BE\)
\(\Delta BAD\)có AD vuông góc BF ta có \(AF^2=DF\times BF\)
TA CÓ \(AB^4=CE\times BE\times DF\times BF=CE\times DF\times AB\times EF\Rightarrow CE\times DF\times EF=AB^3\)
mình chăc chắn câu (B) là CE.DE.EF=AB^3 chứ ko phải là CF đâu ( chăc bạn nhìn nhầm rồi) và mk ms chỉ nghĩ đến câu b thui thông cảm
Haha ! =>))))))))
\(\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}=5\)
\(\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}=3\)