cho 2 số thực dương x, y thỏa \(x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}=12\) tìm min M= \(\frac{x^3}{y+2}+\frac{y^3}{x+2}+\frac{48}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề lại bạn nhé =) \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)
đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\Rightarrow\hept{\begin{cases}a=kA\\b=kB\end{cases}va\hept{\begin{cases}c=kC\\d=kD\end{cases}}}\)
theo đề bài ta có \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)
=\(\sqrt{k}\left(A+B+C+D\right)\left(1\right)\)
ta lại có \(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(kA+kB+kC+kD\right)\left(A+B+C+D\right)}\)
=\(\sqrt{k\left(A+B+C+D\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\left(2\right)\)
(1),(2)=> \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Xét : \(1+2x=1+\frac{\sqrt{3}}{2}=\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(1-2x=1-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{4}\)
Ta có : \(A=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\sqrt{\left(\frac{\sqrt{3}+1}{2}\right)^2}}+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1-\sqrt{\left(\frac{\sqrt{3}-1}{2}\right)^2}}\)
\(=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{1+\frac{\sqrt{3}+1}{2}}+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{1-\frac{\sqrt{3}-1}{2}}=\frac{\left(\sqrt{3}+1\right)^2}{2\left(3+\sqrt{3}\right)}+\frac{\left(\sqrt{3}-1\right)^2}{2\left(3-\sqrt{3}\right)}\)
\(=\frac{1}{2\sqrt{3}}\left(\frac{4+2\sqrt{3}}{\sqrt{3}+1}+\frac{4-2\sqrt{3}}{\sqrt{3}-1}\right)=\frac{1}{2\sqrt{3}}.\frac{4\sqrt{3}-4+6-2\sqrt{3}+4\sqrt{3}+4-6-2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\frac{1}{2\sqrt{3}}.\frac{4\sqrt{3}}{2}=1\)
\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
ĐK: x^2-5x+6>=0<=> x<=2 hoặc x>=3
x^2-2x-3>=0<=> x<=-1 hoặc x>=3
<=>\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
<=>\(\sqrt{\left(x-3\right)\left(x-2\right)}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{\left(x-3\right)\left(x+1\right)}\)
<=> \(\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)
<=> \(\sqrt{x-2}\left(\sqrt{x-3}-1\right)-\sqrt{x+1}\left(\sqrt{x-3}-1\right)=0\)
<=> \(\left(\sqrt{x-3}-1\right)\left(\sqrt{x-2}-\sqrt{x+1}\right)=0\)
<=>\(\orbr{\orbr{\begin{cases}\sqrt{x-3}-1=0\\\sqrt{x-2}-\sqrt{x+1}=0\end{cases}}}\)
<=>\(\orbr{\begin{cases}\sqrt{x-3}=1\\\sqrt{x-2}=\sqrt{x+1}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\left(nhan\right)\\0x=3\left(vôly\right)=>loai\end{cases}}\)
S={4}
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)
Câu 2a. Theo đầu bài ta có hình:
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
Bạn tự vẽ hình nhé :))
Từ B kẻ tia Bx cắt AD tại E sao cho góc ABE = góc ADC.
\(\Delta AEB\)và \(\Delta ACD\)có: góc ABE = góc ADC (cách dựng) và góc BAE = góc DAC (gt)
\(\Rightarrow\)\(\Delta AEB\)đồng dạng \(\Delta ACD\)\(\Rightarrow\)\(\frac{AB}{AD}=\frac{AE}{AC}\)\(\Rightarrow\)\(AB.AC=AE.AD\)(1)
\(\Rightarrow\)góc BED = góc ACD.
\(\Delta ACD\)và \(\Delta BED\)có: góc ACD = góc BED (cmt) và góc ADC = góc BDE (đối đỉnh)
\(\Rightarrow\)\(\Delta ACD\)đồng dạng \(\Delta BED\)\(\Rightarrow\)\(\frac{DB}{AD}=\frac{DE}{DC}\)\(\Rightarrow\)\(DB.DC=DE.AD\)(2)
Lấy (1) - (2) vế theo vế ta được \(AB.AC-DB.DC=AD\left(AE-DE\right)\)\(\Leftrightarrow\)\(AD^2=AB.AC-DB.DC\)(đpcm).
\(---------\)
Ta có:
\(x+y+4=\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right)\left(y+2\right)}\) (theo bđt \(AM-GM\) cho bộ số gồm hai số thực không âm)
nên \(x+y+\left(x+y+4\right)\ge x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}\)
hay nói cách khác, \(2\left(x+y+2\right)\ge12\) (do \(x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}=12\) )
\(\Rightarrow\) \(x+y\ge4\)
Do đó, sau khi thiết lập điều kiện cho \(x,y\) , ta tiếp tục áp dụng \(AM-GM\) cho 3 số thực dương đã cho trước, điển hình như:
\(\frac{x^3}{y+2}+\frac{y+2}{2}+2\ge3\sqrt[3]{\frac{x^3}{\left(y+2\right)}.\frac{\left(y+2\right)}{2}.2}=3x\)
\(\Rightarrow\) \(\frac{x^3}{y+2}\ge3x-\frac{y+2}{2}-2\) \(\left(1\right)\)
Đổi biến, thực hiện công đoạn trên tương tự đối với phân thức sau, rút gọn và biến đổi lặp lại:
\(\frac{y^3}{x+2}\ge3y-\frac{x+2}{2}-2\) \(\left(2\right)\)
Gộp \(\left(1\right)\) và \(\left(2\right)\) với nhau cùng với dấu liên kết \(\left(+\right)\) , khi đó:
\(\frac{x^3}{y+2}+\frac{y^3}{x+2}\ge\frac{5}{2}\left(x+y\right)-6\)
Lúc đó,
\(M\ge\frac{5}{2}\left(x+y\right)+\frac{48}{x+y}-6\)
\(---------\)
Đặt \(t=x+y\) \(\Rightarrow\) \(t\ge4\)
\(\Rightarrow\) \(\frac{t}{2}\ge2\) \(\Rightarrow\) \(\frac{t}{2}-2\ge0\) \(\left(3\right)\)
Ta biễu diễn bđt trên lại như sau:
\(M\ge\frac{5t}{2}+\frac{48}{t}-6\)
tức là \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2\) (do \(\left(3\right)\) )
hay \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2=3t+\frac{48}{t}-8\)
Mặt khác, ta lại có: \(3t+\frac{48}{t}\ge2\sqrt{3t.\frac{48}{t}}=24\)
nên \(M\ge24-8=16\)
Vậy, \(M_{min}=16\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=2\)
\(\Rightarrow\frac{x^3}{y+2}+\frac{y^3}{x+2}+2.\left(\sqrt{x+2}+\sqrt{y+2}\right)\ge3\left(x+y\right)\)
\(\Rightarrow M+8\ge3\left(x+y\right)+\frac{48}{x+y}\ge2.\sqrt{3.\left(x+y\right).\frac{48}{x+y}}=24\)( do (1) và áp dụng bdt cosi cho 2 số dg) . Dấu "=" xảy ra <=> x=y=2 . OK.