K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Đề đúng là: Cho  \(a,b,c>0\) thỏa mãn \(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)

Chứng minh \(\sqrt[2006]{a}+\sqrt[2006]{b}-\sqrt[2006]{c}=\sqrt[2006]{a+b-c}\)

Giải: Từ \(\sqrt{a}+\sqrt{b}-\sqrt{c}=\sqrt{a+b-c}\)\(\Rightarrow\)\(\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2=\left(\sqrt{a+b-c}\right)^2\)

\(\Leftrightarrow\)\(a+b+c+2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}=a+b-c\)

\(\Leftrightarrow\)\(2c+2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}=0\)

\(\Leftrightarrow\)\(\left(c-\sqrt{ca}\right)+\left(\sqrt{ab}-\sqrt{bc}\right)=0\)

\(\Leftrightarrow\)\(\sqrt{c}\left(\sqrt{c}-\sqrt{a}\right)-\sqrt{b}\left(\sqrt{c}-\sqrt{a}\right)=0\)

\(\Leftrightarrow\)\(\left(\sqrt{c}-\sqrt{a}\right)\left(\sqrt{c}-\sqrt{b}\right)=0\)

\(\Rightarrow\)\(\sqrt{c}-\sqrt{a}=0\) hoặc \(\sqrt{c}-\sqrt{b}=0\)\(\Rightarrow\)\(\sqrt{c}=\sqrt{a}\) hoặc \(\sqrt{c}=\sqrt{b}\)

- Nếu \(\sqrt{c}=\sqrt{a}\) thì \(\sqrt[2006]{a}+\sqrt[2006]{b}-\sqrt[2006]{c}=\sqrt[2006]{b}=\sqrt[2006]{a+b-c}\)

- Nếu \(\sqrt{c}=\sqrt{b}\) thì \(\sqrt[2006]{a}+\sqrt[2006]{b}-\sqrt[2006]{c}=\sqrt[2006]{a}=\sqrt[2006]{a+b-c}\)

12 tháng 8 2016

chịu .chưa học ai cũng chưa học giống mình thì k cho mình .rồi mình k lại cho.thề đấy

11 tháng 8 2016

khó thế

11 tháng 8 2016

Bạn học lớp mấy z, khó quá

11 tháng 8 2016

Cô hướng dẫn nhé.

Giả sử điểm cầm tìm là M(a; 0). Như vậy, đường thẳng qua M, vuông góc với Ox là đường thẳng (d) : x = a.

Giao điểm của (d) với hai đường thẳng đã cho lần lượt là: \(A\left(a;\frac{2a-4}{3}\right)\) và \(B\left(a;\frac{3a-2}{5}\right)\)

Do a nguyên nên ta cầm tìm điều kiện để \(\frac{2a-4}{3}\) và \(\frac{3a-2}{5}\)nguyên.

Ta thấy \(\frac{2a-4}{3}=\frac{2\left(a-2\right)}{3}\)nên (a - 2) chia hết 3. Vậy thì a có dạng 3k + 2, (k nguyên dương).

\(\frac{3a-2}{5}=\frac{3a+3-5}{5}\) nên (3a + 3) chia hết 5 hay a + 1 chia hết 5. Vậy a có dạng 5t - 1, (t nguyên dương).

Kết hợp hai điều kiện: \(3k+2=5t-1\Leftrightarrow3\left(k+1\right)=5t\Leftrightarrow\frac{k+1}{5}=\frac{t}{3}.\)

a min thì k, t min nên ta tìm được k = 4, t = 3.

Vậy thi a = 14.

11 tháng 8 2016

kết quả bằng 14

10 tháng 8 2016

Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)

Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)

  • Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
  • Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).  

Từ điều kiện : Với \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\)

 \(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>0\)

Do đó pt (1) vô nghiệm.

Vậy pt ban đầu vô nghiệm.

10 tháng 8 2016

Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)

Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)

\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)

  • Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
  • Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).  So sánh từ điều kiện : Với mọi \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\)\(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>\)với mọi x

Do đó pt (1) vô nghiệm.

Vậy pt ban đầu vô nghiệm.

5 tháng 11 2018

ai giải giúp bạn này đi TT mik cũng muốn xem lời giải bài này 

2 tháng 12 2019

Câu 1: Đặt bt là A>0 ta có:

\(2A=3-\frac{a^2b}{2+a^2b}-\frac{b^2c}{2+b^2c}-\)\(\frac{c^2a}{2+c^2a}\)

Áp dụng bđt Cosi ta đc \(2A\ge3-\frac{1}{3}\left(\sqrt[3]{a^4b^2}+\sqrt[3]{b^4c^2}+\sqrt[3]{c^4a^2}\right)\)

\(\ge3-\frac{1}{3}\left(\frac{2ab+a^2}{3}+\frac{2bc+b^2}{3}+\frac{2ca+c^2}{3}\right)\)\(=3-\frac{1}{3}\left(\frac{\left(a+b+c\right)^2}{3}\right)=3-3\cdot\frac{1}{3}=2\)

\(\Rightarrow A\ge1\)

10 tháng 8 2016

A B C M I

a) Xét hai tam giác : \(\Delta MCD\) và \(\Delta MAB\)có :  

\(\widehat{DMC}=\widehat{ABD}\)(Vì \(\widehat{DMC}=\frac{1}{2}\text{sđ cung AC}\)\(\widehat{AMB}=\text{sđ cung AB}\), sđ cung AB = sđ cung AC)

\(\widehat{BAM}=\widehat{BCM}=\widehat{DCM}=\frac{1}{2}\text{sđ cung BM}\) 

\(\Rightarrow\Delta MCD~\Delta MAB\left(g.g\right)\)\(\Rightarrow\frac{MC}{MA}=\frac{CD}{AB}\)(2)

Tương tự, ta cũng chứng minh được \(\Delta MBD~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{MB}{MA}=\frac{BD}{AC}\)hay \(\frac{MB}{MA}=\frac{BD}{AB}\)(1)

Cộng (1) và (2) theo vế : \(\frac{MC}{MA}+\frac{MB}{MA}=\frac{CD}{AB}+\frac{BD}{AB}\Leftrightarrow\frac{MB+MC}{MA}=\frac{AB}{AB}=1\Leftrightarrow MB+MC=MA\)(đpcm)

10 tháng 8 2016

a) Xét hai tam giác : \(\Delta MCD\) và \(\Delta MAB\)có :  

\(\widehat{DMC}=\widehat{ABD}\)(Vì \(\widehat{DMC}=\frac{1}{2}\text{sđ cung AC}\)\(\widehat{AMB}=\frac{1}{2}\text{sđ cung AB}\), sđ cung AB = sđ cung AC)

\(\widehat{BAM}=\widehat{BCM}=\widehat{DCM}=\frac{1}{2}\text{sđ cung BM}\)

\(\Rightarrow\Delta MCD~\Delta MAB\left(g.g\right)\)\(\Rightarrow\frac{MC}{MA}=\frac{CD}{AB}\)(1)

Tương tự, ta cũng chứng minh được \(\Delta MBD~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{MB}{MA}=\frac{BD}{AC}\)hay \(\frac{MB}{MA}=\frac{BD}{AB}\)(2)

Cộng (1) và (2) theo vế : \(\frac{MC}{MA}+\frac{MB}{MA}=\frac{CD}{AB}+\frac{BD}{AB}\Leftrightarrow\frac{MB+MC}{MA}=\frac{AB}{AB}=1\Leftrightarrow MB+MC=MA\)(đpcm)

10 tháng 8 2016

Điều kiện xác định của pt : \(x\ge1\)

Ta có :  \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)

\(\Leftrightarrow3\left[x^2-\left(x-1\right)\right]=\left(x+\sqrt{x-1}\right)^2\)

\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)

\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(3x-3\sqrt{x-1}-x-\sqrt{x-1}\right)=0\)

\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left(x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)

\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left(\sqrt{x-1}-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\sqrt{x-1}=0\\\sqrt{x-1}-1=0\end{cases}}\)

Do \(x+\sqrt{x-1}=\left(x-1\right)+\sqrt{x-1}+1=t^2+t+1=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(t=\sqrt{x-1}\)

nên pt  \(x+\sqrt{x-1}=0\) vô nghiệm.

Vậy \(\sqrt{x-1}-1=0\Leftrightarrow x=2\)(thỏa mãn đk)

Kết luận : Pt có nghiệm x = 2

10 tháng 8 2016

Ta có:

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

Nhân hai vế của đẳng thức với \(\left(\sqrt{x^2+1}-x\right),\)  ta có:

\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\left(\sqrt{x^2+1}-x\right)\)

\(\Leftrightarrow\)  \(y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)  

\(\Leftrightarrow\)  \(x+y=\sqrt{x^2+1}-\sqrt{y^2+1}\left(1\right)\)

Mặt khác,  \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

Nhân hai vế của đẳng thức với \(\left(\sqrt{y^2+1}-y\right),\)  ta có:

\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{y^2+1}-y\)

\(\Leftrightarrow\)  \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)

\(\Leftrightarrow\)  \(x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\left(2\right)\)

Từ  \(\left(1\right);\left(2\right)\)  suy ra được  \(x+y=0\)