K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2 (cố định).

22 tháng 8 2021

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2 (cố định).

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

8 tháng 4 2021

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)

Vậy với x = 4 thì A = 3/4 

b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )

8 tháng 4 2021

a,Ta có  \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)

\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)

b, Với \(x\ge0;x\ne1\)

 \(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)

\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)

Vậy biểu thức ko phụ thuộc biến x 

c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên 

thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\)1-12-2
\(\sqrt{x}\)203-1 
x409vô lí 
13 tháng 4 2021
5 tháng 4 2021
Học nhanh giữ dâi
6 tháng 4 2021

hoc nhanh vậy

Giúp hộ với.

Bài tập Tất cả

0
25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2                                                                                                                                             

3 tháng 4 2021

Đặt 8t=2x

\(d\left(8t\right)=2dx\Rightarrow\frac{d\left(8t\right)}{2}=dx\)

Đổi cận x=0 t=0       x=8 t=2

3 tháng 4 2021

a , ta có:AE//CF (vì cùng vuông góc vsBD)

=> góc FCO= góc EAO (vì so le trong )

      OA = OC (theo t/c hình bh )

xét 2 tam giác vuông OAE và OCF có:

           góc FOC = góc EAO ( cm trên )

            OA = OC (cmt)

   =>tg OAE = tg OCF (cạnh huyền - góc nhọn )

   =>OE = OF ( 2 cạnh tương ứng )

 b. ta có : AE// CF ( theo a ) (1)

               AE = CF ( vì tg OAE= tg OCF ( theo a )) (2)

 từ (1) và (2) => AECF là hbh

 ( hi vọng đúng !!)

3 tháng 4 2021

tam giác ABC vuông tại A có AT là đường cao 

Áp dụng định lí Py ta go ta có : \(AB^2+AC^2=BC^2\Rightarrow25-AB^2=AC^2\)(1) 

* Theo hệ thức : \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AT^2}\Rightarrow\frac{1}{4}=\frac{1}{AB^2}+\frac{1}{25-AB^2}\)( theo 1 ) 

\(\Rightarrow AB=2\sqrt{5};\sqrt{5}\)

TH1 : \(25-\left(2\sqrt{5}\right)^2=AC\Rightarrow AC=\sqrt{5}\)

TH2 : \(25-\left(\sqrt{5}\right)^2=AC\Rightarrow AC=2\sqrt{5}\)

14 tháng 5 2021

Gọi BH là z ( z>0), thì HC là 5-z

ΔABC vuông tại A có:

AH.BC=BH.HC (định lý 3)

⇔ 22 = z(5-z)

⇔ z2 - 5z + 4 = 0

⇔ z(z-1) - 4(z-1) = 0

⇔(z-4)(z-1)=0

\(\left[{}\begin{matrix}z-4=0\\z-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}z=4\left(nhận\right)\\z=1\left(nhận\right)\end{matrix}\right.\)

TH1:Nếu z=4

ΔABC vuông tại A có:

x2=BC.BH ( định lý 1)

⇔ x2= 5.4

⇔ x2= 20

⇒x=\(2\sqrt{5}\)

ta có: y2= BC.HC ( định lý 1)

Chứng minh tương tự như trên ta được

y= \(\sqrt{5}\)

TH2: Nếu z=1

Chứng minh tương tự như TH1 ta được:

x=\(\sqrt{5}\)

y= \(2\sqrt{5}\)