Xét các số thực a, b, c lớn hơn 1 thỏa mãn 2a+2b+2c=3abc. Tìm giá trị nhỏ nhất co thể được của biểu thức:
\(P=\frac{b-2}{a^2}+\frac{c-2}{b^2}+\frac{a-2}{c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cho x,y,z dương. CMR \(\frac{x^3+y^3}{2xy}+\frac{y^3+z^3}{2yz}+\frac{z^3+x^2}{2xz}\ge x+y+z\)
Áp dụng BĐT AM-GM ta có:
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\ge\left(x+y\right)\left(2\sqrt{x^2y^2}-xy\right)\)
\(=\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)
\(\Rightarrow\frac{x^3+y^3}{2xy}\ge\frac{xy\left(x+y\right)}{2xy}=\frac{x+y}{2}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{y^3+z^3}{2yz}\ge\frac{y+z}{2};\frac{z^3+x^3}{2xz}\ge\frac{x+z}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\frac{2\left(x+y+z\right)}{2}=x+y+z=VP\)
Đẳng thức xảy ra khi \(x=y=z\)
Đề sai rồi. Không cho x, y, z dương hay không là đã sai rồi. Giả sử đã cho dương rồi thì vẫn sai.
Thế \(x=y=z=2\) vào thì ta được
\(\frac{2^2+2^2}{2.2.2}+\frac{2^2+2^2}{2.2.2}+\frac{2^2+2^2}{2.2.2}\ge2+2+2\)
\(\Leftrightarrow3\ge6\) sai.
Ta có: \(x^2+y^2+z^2=1\)
\(\Rightarrow0\le x^2,y^2,z^2\le1\)
Theo đề bài thì:
\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)
\(\Rightarrow P\le1\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Với \(x^2+y^2+z^2=1\),ta có:
\(P=xy+yz+zx+\frac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\right]\)
\(=xy+yz+zx+x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\)
\(=x^2y^2+y^2z^2+z^2x^2+xy\left(1-z^2\right)+yz\left(1-x^2\right)+zx\left(1-y^2\right)\)
\(=x^2y^2+y^2z^2+z^2x^2+xy\left(x^2+y^2\right)+yz\left(y^2+z^2\right)+zx\left(z^2+x^2\right)\)
\(=\frac{2x^2y^2+2y^2z^2+2z^2x^2+\left(x^2+y^2\right)^2+\left(y^2+z^2\right)^2+\left(z^2+x^2\right)^2}{2}\)
\(=\frac{2\left(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\right)}{2}=\frac{2\left(x^2+y^2+z^2\right)^2}{2}=1\)
Đẳng thức xảy ra khi \(x=y=z=\pm\frac{\sqrt{3}}{3}\)
Ta có:
\(\hept{\begin{cases}\frac{a^2}{1+b}+\frac{1+b}{4}\ge a\\\frac{b^2}{1+a}+\frac{1+a}{4}\ge b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a^2}{1+b}\ge\frac{4a-b-1}{4}\\\frac{b^2}{1+a}\ge\frac{4b-a-1}{4}\end{cases}}\)
\(\Rightarrow A=\frac{a^2}{1+b}+\frac{b^2}{1+a}\ge\frac{4a-b-1}{4}+\frac{4b-a-1}{4}\)
\(=\frac{3}{4}\left(a+b\right)-\frac{1}{2}\ge\frac{3}{4}.2\sqrt{ab}-\frac{1}{2}=\frac{3}{2}-\frac{1}{2}=1\)
Dấu = xảy ra khi \(a=b=1\)
a) Ta có : \(\widehat{O_1}=2\widehat{C}=120^0\) (góc ở tâm gấp đôi góc nội tiếp cùng chắn cung nhỏ AB) nên độ dài cung nhỏ AB là \(\frac{2R\pi.120}{360}=\frac{2}{3}R\pi\)
b) \(\Delta AMC\)cân tại M (MC = MA) có \(\widehat{C}=60^0\)nên \(\Delta AMC\)đều\(\Rightarrow\widehat{AMC}=60^0\Rightarrow\widehat{M_1}=120^0\)
\(\Delta AOK,\Delta BMK\)có \(\widehat{K_1}=\widehat{K_2}\)(đối đỉnh) ; \(\widehat{O_1}=\widehat{M_1}=120^0\Rightarrow\Delta AOK\infty\Delta BMK\left(g-g\right)\)
\(\Rightarrow\frac{AO}{OK}=\frac{BM}{MK}\Rightarrow MK.AO=OK.MB\)
c) Tứ giác ABMO có \(\widehat{O_1}=\widehat{M_1}\)(2 đỉnh kề nhau A,M nhìn xuống cạnh đối diện dưới AB các góc bằng nhau)
=> Tứ giác ABMO nội tiếp hay B,M,O,A cùng thuộc 1 đường tròn
Ta có: \(\Delta=m^2+8>0\) nên phương trình luôn có 2 nghiệm phân biệt.
Giờ ta tìm điều kiện để phương trình có 2 nghiệm thỏa mãn
\(\orbr{\begin{cases}x_1< x_2\le-1\\x_1>x_2\ge1\end{cases}}\)
TH 1: \(x_1< x_2\le-1\)
\(\Rightarrow\hept{\begin{cases}2\left(2.\left(-1\right)^2+m-1\right)\ge0\\\frac{m}{4}< -1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m\ge-1\\m< -4\end{cases}}\) không có m thỏa mãn
TH 2: \(x_1>x_2\ge1\)
\(\Rightarrow\hept{\begin{cases}2\left(2.\left(1\right)^2-m-1\right)\ge0\\\frac{m}{4}>1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m\le1\\m>4\end{cases}}\) không có m thỏa mãn
Vậy với mọi m thì phương trình luôn tồn tại ít nhất 1 nghiệm thỏa mãn
\(-1< x< 1\) hay \(|x|< 1\)
Điều kiện \(x\ne0\)
\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
\(=\left|x+\frac{3}{x}\right|+\left|x-2\right|\)
Để A nguyên thì x phải là ước nguyên của 3 hay \(x=-3;-1;1;3\)
a) Xét đường tròn (O) có tiếp tuyến MA, cát tuyến MBC => MA2 = MB.MC (Hệ thức lượng đường tròn) (đpcm)
Xét \(\Delta\)MOA vuông tại A, đường cao AH => MA2 = MH.MO (Hệ thức lượng tam giác vuông) (đpcm)
b) Từ câu a ta có: MB.MC = MH.MO (=AM2) => \(\Delta\)MBH ~ \(\Delta\)MOC (c.g.c) => ^MHB = ^MCO
=> Tứ giác BCOH nội tiếp đường tròn (đpcm).
c) Áp dụng ĐL Pytagore, ta có các đẳng thức về cạnh:
IK2 = OI2 - OK2 = OI2 - OA2 = (OM - IM)2 - OA2 = OM2 - 2.OM.IM + IM2 - OA2 = AM2 - MH.MO + IM2
= AM2 - AM2 + IM2 = IM2 => IK = IM. Do đó: IK = IM = IH = MH/2
Xét \(\Delta\)MKH có: Trung tuyến KI=MH/2 (cmt) => \(\Delta\)KMH vuông tại K (đpcm).
d) Từ câu a: \(MA^2=MB.MC=\frac{MC}{4}.MC=\frac{MC^2}{4}\) => MA = MC/2 = MD
Từ đó: MA2 = MD2 = MH.MO => \(\Delta\)MDH ~ \(\Delta\)MOD (c.g.c) => ^MDH = ^MOD = 1/2.Sđ(HD(ODH)
Suy ra: MC tiếp xúc với đường tròn (ODH) (đpcm).
Xem lại đề đi bạn. Thấy có vẻ sai sai sao ấy Kan Zandai Nalaza
Từ \(2a+2b+2c=3abc\)
\(\Leftrightarrow\frac{2}{3bc}+\frac{2}{3ac}+\frac{2}{3ab}=1\left(1\right)\)
Khi đó \(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3\sqrt[3]{\frac{b}{a^2}\cdot\frac{c}{b^2}\cdot\frac{a}{c^2}}=3\sqrt[3]{\frac{1}{abc}}\)
\(P_{Min}\) xảy ra khi \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}=3\sqrt[3]{\frac{1}{abc}}\forall a=b=c\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow a=b=c=\sqrt{2}\)
Khi đó \(P_{Min}=3\sqrt[3]{\frac{1}{abc}}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}=\frac{3\sqrt{2}-6}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\sqrt{2}\)
Bài này giải như này cơ:
\(2a+2b+2c=3abc\)\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{3}{2}\)
\(P=\frac{\left(a-1\right)+\left(b-1\right)}{a^2}+\frac{\left(b-1\right)+\left(c-1\right)}{b^2}+\frac{\left(c-1\right)+\left(a-1\right)}{c^2}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a-1\right)\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+\left(b-1\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\left(c-1\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{2\left(a-1\right)}{ac}+\frac{2\left(b-1\right)}{ab}+\frac{2\left(c-1\right)}{bc}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)
\(\ge\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}-3=\sqrt{3.\frac{3}{2}}-3=\frac{3\sqrt{2}-6}{2}\)
Vậy \(minP=\frac{3\sqrt{2}-6}{2}\Leftrightarrow a=b=c=\sqrt{2}\)