K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

Tam giác ABD có OE//AB

=>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)

Tam giác ABC có OF//AB

=>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)

Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)

=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)

Từ (1) (2) và (3) => OE/AB = OF/AB => OE = OF (điều phải chứng minh.)

Chúc bạn học giỏi nha.
 

19 tháng 2 2021

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

20 tháng 2 2016

a)Xét tg DBM có ^DMC là góc ngoài tại đỉnh M 
do ^DBM=^DMC(=60độ) 
=>^DMC = ^DBM+^BDM=^DME+^BDM 
=>^BDM=^DMC-^DME=^EMC 
Xét tg BDM và tg CME có 
- ^DBM=^ECM(=60độ) 
- ^BDM=^EMC 
=>tg BDM đồng dạng tg CME 
=>BD/CM=BM/CE 
=>BD.CE=BM.CM=BC/2.BC/2=BC^2/4 
b) tg BDM đồng dạng tg CME 
=>BD/CM=DM/ME 
=>BD/DM=CM/ME 
Mà MB=CM 
=> BD/DM=BM/ME 
Xét tg BDM và tg MDE có 
- BD/DM=BM/ME 
-^DBM=^DME 
=>tg BDM đồng dạng tg MDE 
=>^BDM=^MDE 
=>DM là tpg BDE 
c) TỪ M kẻ đường thẳng vuông g óc với AB,AC và DE lần lượt tại N,Q,P 
Xét tg NDM vuông tại N v à tg DPM vuông tại P có 
-Chung DM 
-^NDM=^PDM(vì DM l à tpg BDE) 
=> tg NDM= tg DPM(cạnh huyền-góc nhọn) 
=>DN=DP 
tương tự chứng minh : PE=EQ 
Chu vi tg ADE c ó AD+DE+AE=AD+AE+DP+PE=AD+DP+DN+EQ=AN+AQ 
do M cố định , AB và AC ko đổi 
=>N,Q cố định 
=>AN,AQ ko đổi 
=> Chu vi tam giác ADE không đổi.

24 tháng 1 2017

hình đâu

4 tháng 7 2019

A B C M N P D O I S

Ta thấy M,P lần lượt là trung điểm của AB,BC => MP là đường trung bình trong  \(\Delta\)ABC

=> MP // AC hay MP // AD. Xét \(\Delta\)BAD có: M là trung điểm AB, MP // AD => MP đi qua trung điểm BD

Gọi MP cắt BD tại S. Khi đó S là trung điểm BD. Ta sẽ chứng minh AI đi qua S, thật vậy:

Áp dụng hệ quả ĐL Thales có: \(\frac{ON}{AM}=\frac{OP}{BM}\left(=\frac{CO}{CM}\right)\)=> ON = OP (Vì AM = BM)

Áp dụng ĐL Melelaus cho \(\Delta\)PCN và 3 điểm A,O,I có \(\frac{IP}{IC}.\frac{ON}{OP}.\frac{AC}{AN}=1\)

Thay \(\frac{ON}{OP}=1,\frac{AC}{AN}=2\), ta được \(\frac{IP}{IC}=\frac{1}{2}\). Do đó \(\frac{IC}{IB}=\frac{1}{2}\)(Vì PC=1/2BC)

Áp dụng ĐL Melelaus cho \(\Delta\)ABC và 3 điểm M,I,D có \(\frac{MA}{MB}.\frac{IC}{IB}.\frac{DA}{DC}=1\)

Thay \(\frac{MA}{MB}=1,\frac{IC}{IB}=\frac{1}{2}\)(cmt), ta được \(\frac{DA}{DC}=2\)=> C là trung điểm AD 

Xét \(\Delta\)BAD: Các trung tuyến DM, BC cắt nhau tại I => I là trọng tâm của \(\Delta\)BAD

Ta có S là trung điểm BD nên AI đi qua S. Như vậy AI,BD,MP đồng quy tại trung điểm BD (đpcm).

4 tháng 7 2019

Gọi S là giao điểm của MP và BD

Vì P là giao điểm của MS và BC

=> Tứ giác BMCS là hình bình hành

=> \(MC//BD\)

Mà M là trung điểm của AB

=> C là trung điểm của AD

CMTT S là trung điểm của BD

=> BC; DM lần lượt là trung tuyến của tam giác ABD

Mà BC giao DM tại I

=> I là trọng tâm của tam giác ABD

Mà S là trung điểm của BD

=> A;I;S thẳng hàng

=> AI;BD;MP đồng quy tại S

Vậy AI;BD;MP đồng quy tại S

11 tháng 2 2021

Kẻ DI ║ BC. Áp dụng hệ quả định lý Ta-lét vào ΔABC
⇒AD /AB =AI/AC
⇒DB/AB=IC/AC

⇒IC/DB=AC/AB
Vì MC║DI.  Áp dụng định lý Ta-lét vào ΔDIE
⇒DM/ME=IC/CE
Mà DM=CE ⇒IC/CE=IC/DB
⇒DM/ME=AC/AB

Giải thích các bước giải:

 Kẻ DI ║ BC. Áp dụng hệ quả định lý Ta-lét vào ΔABC
⇒AD /AB =AI/AC
⇒DB/AB=IC/AC

⇒IC/DB=AC/AB
Vì MC║DI.  Áp dụng định lý Ta-lét vào ΔDIE
⇒DM/ME=IC/CE
Mà DM=CE ⇒IC/CE=IC/DB
⇒DM/ME=AC/AB

2 tháng 10 2018

\(x^2-\left(y-3\right)x-2y-1=0\)

\(\Leftrightarrow y\left(x+2\right)=x^2+3x-1\)

Dễ thây \(x\ne-2\)

\(\Rightarrow y=\frac{x^2+3x-1}{x+2}=x+1-\frac{3}{x+2}\)

Để y nguyên thì x + 2 là ươc của 3 hay

\(\left(x+2\right)=\left\{-3;-1;1;3\right\}\)

2 tháng 10 2018

\(x^2-\left(y-3\right)x-2y-1=0\)

\(\Leftrightarrow x^2-xy+3x-2y-1=0\)

\(\Leftrightarrow\left(x^2-xy\right)+\left(2x-2y\right)+x-1=0\)

\(\Leftrightarrow x\left(x-y\right)+2\left(x-y\right)+\left(x+2\right)-3=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-y\right)+\left(x+2\right)=3\)

\(\Leftrightarrow\left(x+2\right)\left(x-y+1\right)=3\)

Ta có x, y \(\in\) Z nên x + 2 là ước của 3 \(\Rightarrow x+2\in\left\{1;3;-1;-3\right\}\). Ta có bảng sau:

x + 2x - y + 1xy
13-1-3
3111
-1-3-31
-3-1-5-3
2 tháng 2 2021

Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H

ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé 

2 tháng 2 2021

Gọi I là giao điểm của DE và AH.

Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)

Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)

Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.

Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé

Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)

Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)

Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN

Câu 3. Sử dụng tỉ số  đồng dạng hợp lí rồi suy ra kết quả

Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)

Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)

Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)

Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)

Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)

2 tháng 2 2021

Bài 1:

a) đk: \(x\ne\pm2\)

b) Ta có:

\(A=\left(\frac{1}{2-x}+\frac{3x}{x^2-4}-\frac{2}{2+x}\right)\div\left(\frac{x^2+4}{4-x^2}+1\right)\)

\(A=\left[\frac{1}{2-x}-\frac{3x}{\left(2-x\right)\left(2+x\right)}-\frac{2}{2+x}\right]\div\frac{x^2+4+4-x^2}{\left(2-x\right)\left(2+x\right)}\)

\(A=\frac{2+x-3x-2\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}\div\frac{8}{\left(2-x\right)\left(2+x\right)}\)

\(A=\frac{2-2x-4+2x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}\)

\(A=\frac{-2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}=-\frac{1}{4}\)

=> đpcm

2 tháng 2 2021

Bài 2: 

a) đk: \(x\ne\left\{-3;0;3\right\}\)

b) Ta có:

\(B=\left[\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right]\div\frac{3x^2}{x+3}\)

\(B=\left[\frac{-x^2-3x-9}{\left(x+3\right)^2}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)

\(B=\frac{-x^2-3x-9+x\left(x+3\right)}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)

\(B=\frac{-9}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)

\(B=-\frac{3}{x\left(x+3\right)}\)

c) Khi B = 1/2 thì: \(-\frac{3}{x\left(x+3\right)}=\frac{1}{2}\)

\(\Leftrightarrow x^2+3x=-6\Leftrightarrow x^2+3x+6=0\)

\(\Leftrightarrow\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{15}{4}=0\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\left(ktm\right)\)

29 tháng 1 2021

Bài này lớp  mấy zậy????

31 tháng 1 2021

lớp 8 chứ lớp mấy bn Trang Nhung ?

2 tháng 6 2015

\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

\(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

\(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> x-23=0

x=0+23

x=23. Vậy x=23

Chúc bạn học tốt!^_^

1 tháng 6 2015

\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\) 

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=>( x-13)(\(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\) = 0

ta thấy 1/24>1/25>1/26>1/27 => 1/24+1/25 - 1/ 26 - 1/17 > 0

=> x -13 = -

=> x=13