Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Tam thức bậc hai f(x)=2x2+2x+5 nhận giá trị dương khi và chỉ khi
Cho f(x)=ax2+bx+c với a=0 và Δ=b2−4ac.
Điền vào các ô trống để được các khẳng định đúng:
1) Nếu Δ
- =
- >
- <
2) Nếu Δ=0 thì f(x)
- trái dấu
- cùng dấu
3) Nếu Δ>0 thì:
f(x) cùng dấu với a khi x nằm
- ngoài
- trong
f(x) trái dấu với a khi x nằm
- trong
- ngoài
Tam thức f(x)=3x2+2(2m−1)x+m+4 dương với mọi x khi
Cho bảng xét dấu của tam thức bậc hai y=f(x)=ax2+bx+c với a=0 như sau:
Tập hợp các giá trị của x để f(x)≥0 là
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Tam thức f(x)=−2x2+(m−2)x−m+4 không dương với mọi x khi
Phương trình 2x2−(m2−m+1)x+2m2−3m−5=0 có hai nghiệm phân biệt trái dấu khi và chỉ khi
Tam thức bậc hai −x2+5x−6 nhận giá trị dương khi và chỉ khi
Tam thức bậc hai f(x)=x2+(1−3)x−8−53 luôn
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi