Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Dấu của tam thức bậc hai SVIP
Nội dung này do giáo viên tự biên soạn.
I. DẤU CỦA TAM THỨC BẬC HAI
Đa thức bậc hai \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right)\) được gọi là tam thức bậc hai.
Cho tam thức bậc hai \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right),\Delta=b^2-4ac.\)
- Nếu \(\Delta< 0\) thì \(f\left(x\right)\) cùng dấu với hệ số \(a\) với mọi \(x\inℝ.\)
- Nếu \(\Delta=0\) thì \(f\left(x\right)\) cùng dấu với hệ số \(a\) với mọi \(x\in \mathbb{R}\setminus \left \{-\frac{b}{2a} \right \}\).
- Nếu \(\Delta>0\) thì \(f\left(x\right)\) có hai nghiệm phân biệt \(x_1,x_2\left(x_1< x_2\right)\). Khi đó:
\(f\left(x\right)\) cùng dấu với hệ số \(a\) với mọi \(x\in\left(-\infty;x_1\right)\cup\left(x_2;+\infty\right)\);
\(f\left(x\right)\) trái dấu với hệ số \(a\) với mọi \(x\in\left(x_1;x_2\right).\)
II. VÍ DỤ
Ví dụ. Xét dấu các tam thức bậc hai sau:
a) \(3x^2-x+1\);
b) \(-x^2+4x+5\);
c) \(x^2+6x+9\).
Giải
a) \(f\left(x\right)=3x^2-x+1\) có \(\Delta=-11< 0\) và \(a=3>0\) nên \(f\left(x\right)>0\) với mọi \(x\inℝ.\)
b) \(g\left(x\right)=-x^2+4x+5\) có \(\Delta'=9>0\) và \(a=-1< 0\) và có hai nghiệm phân biệt \(x_1=-1;x_2=5\) do đó \(g\left(x\right)< 0\) với mọi \(x\in\left(-\infty;-1\right)\cup\left(5;+\infty\right)\) và \(g\left(x\right)>0\) với mọi \(x\in\left(-1;5\right).\)
c) \(h\left(x\right)=x^2+6x+9\) có \(\Delta=0\) và \(a=1>0\) nên \(h\left(x\right)\) có nghiệm kép \(x=-3\) và \(h\left(x\right)>0\) với mọi \(x\ne-3.\)
Bạn có thể đánh giá bài học này ở đây