Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Ôn tập và kiểm tra cuối chương V SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hai điểm M(1;2;−4) và M′(5;4;2) biết M′ là hình chiếu vuông góc của M lên mặt phẳng (α). Khi đó mặt phẳng (α) có một vectơ pháp tuyến là
Trong không gian Oxyz, cho mặt phẳng (P):2x−y+3=0. Vectơ nào sau đây không là vectơ pháp tuyến của mặt phẳng (P)?
Phương trình nào sau đây là phương trình mặt cầu?
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;0;6) và mặt phẳng (α) có phương trình x+2y+2z−1=0. Phương trình mặt phẳng (β) đi qua điểm M và song song với mặt phẳng (α) là
Trong không gian Oxyz, cho mặt phẳng (P) song song và cách mặt phẳng (Q):x+2y+2z−3=0 một khoảng bằng 1 và (P) không qua O. Phương trình của mặt phẳng (P) là
Trong không gian Oxyz, cho hai đường thẳng (d1):2x−1=1y+2=−2z−2, (d2):⎩⎨⎧x=2−ty=3+tz=4+t (t là tham số) và mặt phẳng (P):x−y+z−6=0. Đường thẳng (d) song song (P), cắt (d1) và (d2) lần lượt tại A và B sao cho AB=36. Phương trình của (d) là
Trong một khung lưới ô vuông gồm các hình lập phương, xét các đường thẳng đi qua hai nút lưới (mỗi nút lưới là đỉnh của hình lập phương), người ta đưa ra một cách kiểm tra độ lệch về phương của hai đường thẳng bằng cách gắn hệ tọa độ Oxyz vào khung lưới ô vuông và tìm vectơ chỉ phương của hai đường thẳng đó. Giả sử, đường thẳng a đi qua hai nút lưới M(1;1;2) và N(0;3;0), đường thẳng b đi qua hai nút lưới P(1;0;3) và Q(3;3;9). Sau khi làm tròn đến hàng đơn vị của độ thì góc giữa hai đường thẳng a và b bằng n∘ (n là số tự nhiên). Giá trị của n bằng bao nhiêu?
Cho tam giác ABC có A(2;2;0), B(1;0;2), C(0;4;4). Mặt cầu (S) có tâm A và đi qua trọng tâm G của tam giác ABC có phương trình là
Phương trình mặt cầu có tâm A(1;1;3) và tiếp xúc với mặt phẳng xOy là:
Trong không gian Oxyz, mặt phẳng (P) đi qua hai điểm M(2;0;−1), N(1;−1;3) và vuông góc với mặt phẳng (Q):3x+2y−z+5=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) MN=(−1;−1;4). |
|
b) Một vectơ pháp tuyến của mặt phẳng (Q) là nQ=(3;2−1). |
|
c) Vectơ pháp tuyến của mặt phẳng (Q) cũng là vectơ pháp tuyến của mặt phẳng (P). |
|
d) Phương trình mặt phẳng (P):7x−11y−9z+15=0. |
|
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;1;3),B(−1;3;2),C(−1;2;3).
a) Ba điểm A,B,C không thẳng hàng. |
|
b) AB=3KC với K(2;−2;2). |
|
c) Phương trình mặt phẳng (ABC) là x+2y+2z+9=0. |
|
d) Khoảng cách từ M(−4;4;0) đến (ABC) lớn hơn khoảng cách từ N(4;2;1) đến (ABC). |
|
Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục là kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(−1;2;5). Biết trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 4 km.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình mặt cầu thể hiện phạm vi phủ sóng tối đa của trạm thu phát sóng là x2+y2+z2+2x−4y−10z−14=0. |
|
b) Điểm A(−1;2;8) nằm ngoài vùng phủ sóng của trạm thu phát sóng điện thoại di động. |
|
c) Một người đứng ở vị trí có tọa độ điểm B(2;0;−5) sẽ không thu được sóng điện thoại ở trạm phát sóng này. |
|
d) Nếu hai người cùng bắt được sóng của trạm thu phát sóng điện thoại đó thì khoảng cách tối đa giữa hai người đó là 8 km. |
|
Trong không gian Oxyz, cho ba điểm A(2;0;0),B(0;1;0),C(0;0;−3). Gọi H là trực tâm tam giác ABC. Độ dài OH có dạng ba (là phân số tối giản có mẫu dương). Tính T=a+b.
Trả lời:
Trong không gian Oxyz, cho điểm A(1011;1;0) và mặt phẳng (Q):x−y−7z+2=0. Biết (P) // (Q) và (P) có dạng x+by+cz+m=0. Tính ∣T∣, với T tổng các giá trị của m sao cho d(A;(P))=1.
Trả lời:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x2+y2+z2=1 và mặt phẳng (P):x+y+z−1=0. Gọi (S′) là mặt cầu chứa đường tròn giao tuyến của (S)và (P) đồng thời tiếp xúc với mặt phẳng (Q):x+1=0. Gọi I(a;b;c) là tâm của mặt cầu (S′), tính giá trị T=a+b+c.