Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề số 3 SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Đường elip có phương trình chính tắc là 16x2+9y2=1 có tiêu cự bằng
Một thùng giấy trong đó có 7 hộp đựng bút màu khác nhau. Số cách chọn hai hộp từ 7 hộp đựng bút trên là
Tập nghiệm của phương trình x2+3x−2=1+x là
Trong mặt phẳng Oxy, hypebol (H) có tiêu cự bằng 8 và giá trị tuyệt đối của hiệu khoảng cách từ mỗi điểm thuộc (H) đến hai tiêu điểm bằng 6. Hypebol (H) có phương trình chính tắc là
Một hộp có 6 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh. Xác suất bạn An lấy từ hộp ra 4 viên bi sao cho có đúng hai viên bi màu đỏ là
Cho hai đường thẳng Δ1:2x+y+15=0 và Δ2:x−2y−3=0.
(Nhấp vào dòng để chọn đúng / sai)Δ1,Δ2 cắt nhau tại (−427;−421). |
|
Δ1,Δ2 vuông góc với nhau. |
|
Hai đường thẳng Δ1,Δ2 cắt nhau. |
|
Δ1 có vectơ pháp tuyến n1=(2;1),Δ2 có vectơ pháp tuyến n2=(1;−2). |
|
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0;4), B(2;4), C(2;0).
(Nhấp vào dòng để chọn đúng / sai)Đường tròn ngoại tiếp tam giác ABC có phương trình tổng quát là: (C):x2+y2−2x−4y=0. |
|
Đường tròn ngoại tiếp tam giác ABC có tâm I(1;2). |
|
Đường tròn ngoại tiếp tam giác ABC có bán kính R=5. |
|
Đường tròn ngoại tiếp tam giác ABC có phương trình chính tắc là: (C):(x−1)2+(y−2)2=5. |
|
Tính tổng bán kính của các đường tròn đi qua A(1;1) và tiếp xúc với hai trục tọa độ.
Trả lời:
Phương trình chính tắc của elip đi qua điểm M(23;2) và M nhìn hai tiêu điểm của elip dưới một góc vuông có dạng (E):mx2+ny2=1. Tính m−n.
Trả lời:
Một lô hàng có 14 sản phẩm, trong đó có đúng 2 phế phẩm. Chọn ngẫu nhiên 8 sản phẩm trong lô hàng đó. Tính xác suất của biến cố "Trong 8 sản phẩm được chọn có không quá 1 phế phẩm". (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Để chụp toàn cảnh, ta có thể sử dụng một gương hypebol. Máy ảnh được hướng về phía đỉnh của gương và tâm quang học của máy ảnh được đặt tại một tiêu điểm của gương (xem hình).
Tìm khoảng cách từ quang tâm của máy ảnh đến đỉnh của gương, biết rằng phương trình cho mặt cắt của gương là 25x2−16y2=1. (Làm tròn đến chữ số thập phân thứ hai)
Trả lời:
Bộ bài tú lơ khơ có 52 quân bài, trong đó gồm 13 tứ quý là A; 2; 3; ...; 10; J; Q và K. Rút ngẫu nhiên ra 4 quân bài.
(Nhấp vào dòng để chọn đúng / sai)Xác suất của biến cố A: "Rút ra được tứ quý Át" là 521. |
|
Xác suất của biến cố B: "Rút ra được hai quân Át, hai quân K" là 27072536. |
|
Xác suất của biến cố C: "Rút ra được ít nhất một quân Át" là 5414538916. |
|
Xác suất của biến cố D: "Rút ra được 4 quân trong đó có đúng 2 quân ở cùng một tứ quý và hai quân còn lại ở hai tứ quý khác nhau" là 27072582368. |
|
Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Xét phép thử chọn ngẫu nhiên 3 viên bi.
(Nhấp vào dòng để chọn đúng / sai)Không gian mẫu của phép thử là: 816. |
|
Xác suất để chọn được 3 viên bi đỏ là 2721. |
|
Xác suất để chọn được 3 viên bi gồm 3 màu là 13635. |
|
Xác suất chọn được nhiều nhất 2 viên bi xanh là 408403. |
|
Một người đang chơi cầu lông có khuynh hướng phát cầu với góc 30∘ (so với mặt đất). Tính khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa), biết cầu rời mặt vợt ở độ cao 0,8 m so với mặt đất và vận tốc xuất phát của cầu là 6 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng phẳng đứng và làm tròn kết quả tới hàng phần trăm).
Trả lời: m
Một người có 500 triệu đồng gửi tiết kiệm ngân hàng với lãi suất 7,2%/năm. Với giả thiết sau mỗi tháng người đó không rút tiền thì số tiền lãi được nhập vào số tiền ban đầu. Đây được gọi là hình thức lãi kép. Biết số tiền cả vốn lẫn lãi T sau n tháng được tính bởi công thức T=T0(1+r)n, trong đó T0 là số tiền gửi lúc đầu và r là lãi suất của một tháng. Dùng tổng hai số hạng đầu tiên trong khai triển của nhị thức Newton, tính gần đúng số tiền người đó nhận được (cả gốc lẫn lãi) sau 6 tháng.
Trả lời: triệu đồng.