Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho tập hợp A={1;2;3;4;x;y}. Trong các mệnh đề sau, mệnh đề nào đúng?
(i): "3∈A";
(ii): "{3;4}∈A";
(iii): "{a;3;b}∈A".
Cho hai tập hợp A={1;2;3;4;5;6;7}, B={5;6;7;8}. Tập C=A∪B là
Cho tập hợp M={x∈Rx−29<4−2x}. Tập hợp M viết dưới kí hiệu khoảng, nửa khoảng, đoạn là
Parabol (P):y=3x2−2x+1 có đỉnh là
Cho tam giác ABC có AB=5,BC=7,AC=8. Số đo của góc A là
Cho hệ bất phương trình {x+y>02x+5y<0 có tập nghiệm là S. Khẳng định nào sau đây đúng?
Trong các câu sau, câu nào là mệnh đề?
Cho tập hợp A có 4 phần tử. Tập A có bao nhiêu tập con khác rỗng?
Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 10, B={n∈Nn≤6}, C={n∈N4≤n≤10}. Tập hợp A∩(B∪C) là
Cho tam giác vuông, trong đó có một góc bằng trung bình cộng của hai góc còn lại. Cạnh lớn nhất của tam giác đó bằng a. Diện tích tam giác đó bằng
Cho tam giác ABC cân tại A có A=100∘. Gọi P là một điểm nằm trong tam giác ABC sao cho PBC=20∘ và PCB=30∘. Biết AB=5, độ dài cạnh BP là
Cho A là mệnh đề sai và B là mệnh đề đúng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B⇒A là mệnh đề đúng. |
|
b) B⇔A là mệnh đề đúng. |
|
c) A⇔B là mệnh đề đúng. |
|
d) B⇒A là mệnh đề sai. |
|
Cho ba tập hợp: A=(−∞;1]; B=[−2;2] và C=(0;5).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) C⊂A. |
|
b) A∩C=(0;1]. |
|
c) A∩B=(−2;1). |
|
d) (A∩B)∪(A∩C)=[−2;1]. |
|
Một cửa hàng bán hai loại thức uống, trong đó 1 ly thức uống loại A có giá 15000 đồng, 1 ly thức uống loại B có giá 20000 đồng. Muốn có lãi theo dự tính thì mỗi ngày cửa hàng phải bán được ít nhất 2 triệu đồng tiền hàng. Gọi x, y lần lượt là số ly thức uống loại A và loại B bán được trong một ngày.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền thức uống bán được trong một ngày là 15x+20y nghìn đồng. |
|
b) Muốn có lãi theo dự tính thì 3x+4y≥400 000. |
|
c) Mỗi ngày bán được 78 ly loại A và 42 ly loại B thì cửa hàng đó có lãi như dự tính. |
|
d) Mỗi ngày bán được 83 ly loại A và 37 ly loại B thì cửa hàng đó có lãi như dự tính. |
|
Cho sinα=31 với 90∘<α<180∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0. |
|
b) cosα=−322. |
|
c) tanα=−221. |
|
d) cotα=22. |
|
Lớp 10A có 21 em thích học Toán, 19 em thích học Văn và có 18 em thích học tiếng Anh. Trong số đó có 9 em thích học cả Toán lẫn Văn, 7 em thích học cả Văn lẫn tiếng Anh, 6 em thích học cả Toán lẫn tiếng Anh và có 4 em thích học cả ba môn Toán, Văn, Anh, không có em nào không thích một trong ba môn học trên. Trong lớp 10A có bao nhiêu học sinh?
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Trong hệ tọa độ Oxy, cho bất phương trình 2x+y≥2 có miền nghiệm D. Dựng hình vuông ABCO có cạnh a nằm trong góc phần tư thứ nhất, với O(0;0) là gốc tọa độ. Biết rằng diện tích phần chung giữa miền nghiệm D và hình vuông ABCO bằng 2022. Tính a (làm tròn kết quả đến hàng đơn vị).
Trả lời:
Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24 g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1 g hương liệu; pha chế 1 lít nước táo cần 10 g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính a−b.
Trả lời:
Tìm giá trị nhỏ nhất của biết thức F(x;y)=x−2y với điều kiện ⎩⎨⎧0≤y≤5x≥0x+y−2≥0x−y−2≤0.
Trả lời:
Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB=40 m, CAB=45∘ và CBA=70∘.
Sau khi đo đạc và tính toán ta được khoảng cách AC bằng bao nhiêu mét? (làm tròn kết quả đến hàng phần mười)
Trả lời: