Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Kết quả thu thập điểm số môn Toán của 25 học sinh khi tham gia kì thi học sinh giỏi toán 12 (thang điểm 20) cho ta bảng tần số ghép nhóm sau:
Nhóm | Số học sinh |
[4;8) | 8 |
[8;12) | 12 |
[12;16) | 3 |
[16;20) | 2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Cho hình hộp ABCD.EFGH. Khi đó AB−EH là
Trong không gian với hệ tọa độ Oxyz, cho ba vectơ a=(5;7;2),b=(3;0;1),c=(−6;1;−1). Tọa độ của vectơ m=3a−2b+c là
Trong không gian Oxyz với i,j,k lần lượt là vectơ đơn vị của các trục Ox,Oy,Oz, cho a=2i+k−3j. Tọa độ của a là
Đồ thị hàm số y=x3−6x2+11x−6 cắt trục hoành tại bao nhiêu điểm phân biệt?
Giá trị nhỏ nhất của hàm số y=1−x2x+1 trên đoạn [2;3] bằng
Cho hàm số y=x4−2x2. Mệnh đề nào dưới đây đúng?
Mỗi ngày bác Tâm đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày của bác Tâm trong 20 ngày được thống kê lại trong bảng sau:
Quãng đường (km) | Số ngày |
[2,7;3) | 3 |
[3;3,3) | 6 |
[3,3;3,6) | 5 |
[3,6;3,9) | 4 |
[3,9;4,2) | 2 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là
Môt chiếc khinh khí cầu bay lên từ địa điểm cho trước. Sau khoảng thời gian bay, chiếc khinh khí cầu cách địa điểm xuất phát 2,5 km về hướng nam và 1,7 km về hướng đông, đồng thời cách mặt đất là 0,6 km. Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của chiếc khinh khí cầu, mặt phẳng (Oxy) trùng với mặt đất, trục Ox hướng về nam, trục Oy hướng về phía đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo ki-lô-mét.
Khoảng cách từ địa điểm xuất phát đến địa điểm hiện tại của khinh khí cầu gần nhất với giá trị nào sau đây là
Đường cong ở hình vẽ trên là của đồ thị hàm số nào?
Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với x người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bẳng công thức P(x)=4x+255000x. Xem y=P(x) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Cho hàm số y=f(x) liên tục trên R và đồ thị của hàm số y=f′(x) như hình vẽ dưới đây.
Hàm số đã cho đạt cực đại tại điểm
Một công ty cung cấp nước sạch thống kê lượng nước các hộ gia đình trong một khu vực tiêu thụ trong một tháng ở bảng sau:
Lượng nước tiêu thụ (m3) | Số hộ gia đình |
[3;6) | 24 |
[3;6) | 57 |
[9;12) | 42 |
[12;15) | 29 |
[15;18) | 8 |
a) Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là 15. |
|
b) Khoảng biến thiên của tứ phân vị là 8,95. |
|
c) Có một gia đình sử dụng 3 m3 nước trong một tháng, đây là giá trị ngoại lệ của mẫu số liệu ghép nhóm. |
|
d) Công ty muốn gửi một thông báo khuyến nghị tiết kiệm nước đến 25% các hộ gia đình có lượng nước tiêu thụ cao nhất thì công ty nên gửi thông báo tiết kiệm nước đến các hộ gia đình có lượng nước tiêu thụ từ 8,95 m3 nước trở lên. |
|
Cho tứ diện OABC có các cạnh OA,OB,OC đôi một vuông góc và OA=OB=OC=a. Gọi M,N lần lượt là trung điểm các cạnh AB,OC.
a) MN=21(OA+BC). |
|
b) cos(OM,CM)=33. |
|
c) MN.OA=−2a2. |
|
d) ∣CB+OA∣=a2. |
|
Một trang sách có dạng hình chữ nhật có diện tích 384 cm2. Sau khi để lề trên và lề dưới đều là 3 cm; lề trái và lề phải là 2 cm; phần còn lại của trang sách được in chữ. Gọi x là chiều rộng của trang sách.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Chiều dài của trang sách là: 384−x (cm). |
|
b) Diện tích lớn nhất của trang sách được in chữ là: 360 cm2. |
|
c) Trang sách được in chữ có diện tích lớn nhất khi x=16 (cm). |
|
d) Phần diện tích để trống là: 144 cm2. |
|
Cho hàm số y=f(x)=x+12x2+5x+4.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tiệm cận đứng của đồ thị hàm số là x=−1. |
|
b) x→+∞limxf(x)=2. |
|
c) x→+∞lim[f(x)−2x]=5. |
|
d) Tiệm cận xiên của đồ thị hàm số là đường thẳng y=2x+3. |
|
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li (m) | Tần số |
[19;19,5) | 12 |
[19,5;20) | 46 |
[20;20,5) | 20 |
[20,5;21) | 16 |
[21;21,5) | 6 |
Tính phương sai của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến chữ số hàng phần trăm).
Trả lời: .
Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được đặt vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA;EB;EC;ED bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc α.
Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết các lực căng F1;F2;F3;F4 đều có cường độ là 4800N, trọng lượng của cả khung sắt chứa xe ô tô là 72006N. Tính sinα. (làm tròn kết quả đến chữ số hàng phần trăm).
Trả lời:
Một người đàn ông muốn chèo thuyền ở vị trí A tới điểm B về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến C và sau đó chạy đến B, hay có thể chèo trực tiếp đến B, hoặc anh ta có thể chèo thuyền đến một điểm D giữa C và B và sau đó chạy đến B. Biết anh ấy có thể chèo thuyền 6 km/h, chạy 8 km/h và quãng đường BC=8 km. Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tìm khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến B.
Trả lời:
Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t)=−4,9t2+20t+1, trong đó độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Tại thời điểm x giây kể từ khi bắt đầu được ném lên thì quả bóng đạt độ cao lớn nhất. Tính x. (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Có bao nhiêu giá trị nguyên của tham số m∈[−2024;2024] để hàm số y=x2+1−mx−1 đồng biến trên (−∞;+∞)?
Trả lời:
Gọi M,N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là điểm bất kì trong không gian. Tìm giá trị k trong đẳng thức vectơ PI=k(PA+PB+PC+PD). (Ghi kết quả dưới dạng số thập phân)
Trả lời: