Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hai mệnh đề: P: "30 không chia hết cho 5" và Q: "π<3,15". Khẳng định nào sau đây đúng?
Cho tập hợp M={(x;y)x,y∈R,x2+y2≤0}. Tập hợp M có bao nhiêu phần tử?
Cho tập hợp X={a;b},Y={a;b;c}. X∪Y là tập hợp nào sau đây?
Sử dụng các kí hiệu khoảng, nửa khoảng hoặc đoạn để viết tập hợp A={x∈R−5≤x≤−3} ta có
Điểm I(−2;1) là đỉnh của parabol nào sau đây?
Cho tam giác ABC có a=BC=8,b=AC=10, C=60∘. Độ dài cạnh AB là
Miền nghiệm của hệ bất phương trình ⎩⎨⎧x>0x−y≤2x+y≤1 chứa điểm nào sau đây?
Mệnh đề phủ định của "14 là số nguyên tố" là
Cho tập hợp A={x2+1x∈N,x≤5}. Tập hợp A viết bằng cách liệt kê phần tử là
Cho A={0;1;2;3;4},B={2;3;4;5;6}. Tập hợp (A\B)∪(B\A) bằng
Cho hình chữ nhật ABCD có cạnh AB=4, BC=6, M là trung điểm của BC, N là điểm trên cạnh CD sao cho ND=3NC. Bán kính của đường tròn ngoại tiếp tam giác AMN bằng
Cho tam giác ABC nội tiếp đường tròn bán kính R, AB=R, AC=R2. Số đo góc tù A bằng
Cho P⇔Q là mệnh đề đúng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) P⇒Q đúng. |
|
b) Q⇒P sai. |
|
c) P⇔Q sai. |
|
d) P⇔Q sai. |
|
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại I và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất hai sản phẩm trên là 18 giờ. Gọi x,y lần lượt là số sản phẩm loại I, loại II mà đội làm được trong thời gian cho phép.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng thời gian (giờ) làm xong sản phẩm loại I là 2x, tổng thời gian làm xong sản phẩm loại II là 3y. |
|
b) 3x+2y<18. |
|
c) Khi số sản phẩm loại I là 3, loại II là 4 thì thời gian đội đó làm nằm trong thời gian cho phép. |
|
d) Khi số sản phẩm loại I là 2, loại II là 6 thì thời gian đội đó làm vượt quá thời gian cho phép. |
|
Cho sinα=32 với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα<0. |
|
b) cos2α=95. |
|
c) cosα=−35. |
|
d) 2sinα+cosαsinα+5cosα=4+57. |
|
Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lí, 14 học sinh giỏi cả môn Toán và Lí và có 6 học sinh không giỏi môn nào cả. Lớp học đó có bao nhiêu học sinh?
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24 g hương liệu, 9 lít nước và 210 g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 g đường, 1 lít nước và 1 g hương liệu; pha chế 1 lít nước táo cần 10 g đường, 1 lít nước và 4 g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính a−b.
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F=y−x trên miền xác định bởi hệ ⎩⎨⎧y−2x≤22y−x≥4x+y≤5.
Trả lời:
Một chiếc tàu khởi hành từ bến cảng đi về hướng bắc 15 km, sau đó bẻ lái một góc 20∘ về hướng tây bắc và đi thêm 12 km nữa.
Tính khoảng cách từ tàu đến bến cảng. (Làm tròn kết quả đến hàng đơn vị của ki-lô-mét)
Trả lời: