Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Giá trị của k thích hợp điền vào đẳng thức vectơ DA+DB+DC=kDG là
Trong không gian Oxyz cho a=i−2k. Tọa độ a là
Trong không gian Oxyz, cho hai điểm A(2;3;4) và B(3;0;1). Độ dài của vectơ AB bằng
Cho hàm số y=−x3−3x2+9x−1. Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) xác định và liên tục trên khoảng (−∞;21) và (21;+∞). Đồ thị hàm số y=f(x) là đường cong trong hình vẽ.
Khẳng định nào sau đây đúng?
Tiệm cận đứng của đồ thị hàm số y=x−22x2−3x−1 là
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Một ứng dụng của hàm số trong vật lý là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Giá trị lớn nhất của hàm số y=−x3+3x trên đoạn [0;2] là
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Hàm số y=f(x) có đạo hàm y=f′(x) liên tục trên R và có đồ thị như hình dưới đây.
Số điểm cực đại của hàm số y=f(x) là
Cho hình hộp ABCD.A′B′C′D′.
a) AB=D′C′. |
|
b) AC′=AB+AD+AA′. |
|
c) AB+AA′=AD+DD′. |
|
d) AD+DC+CC′=AD′+D′C′. |
|
Cho hàm số y=f(x). Biết y=f(x) có đạo hàm là f′(x) và hàm số y=f′(x) có đồ thị như hình vẽ sau.
a) Đồ thị của hàm số y=f(x) chỉ có hai điểm cực trị và chúng nằm về hai phía của trục hoành. |
|
b) Hàm số y=f(x) đồng biến trên khoảng (1;3). |
|
c) Hàm số y=f(x) nghịch biến trên khoảng (−∞;2). |
|
d) Hàm số y=f(x) chỉ có hai điểm cực trị. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=f(x)=x−1+9−x.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số y=f(x) là D=[1;9]. |
|
b) f′(5)=0. |
|
c) Hàm số y=f(x) đạt giá trị lớn nhất tại x=1. |
|
d) Tập giá trị của hàm số y=f(x) là T=[22;4]. |
|
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Cho hình hộp ABCD.A′B′C′D′. Một đường thẳng Δ cắt các đường thẳng AA′,BC,C′D′ lần lượt tại M,N,P sao cho NM=2NP. Tính MA′MA.
Trả lời:
Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số y=f(t)=1+5e−t5000,t≥0, trong đó thời gian t (năm) được tính kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm f′(t) sẽ biểu thị tốc độ bán hàng. Sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (làm tròn kết quả tới chữ số hàng phần mười)
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình vẽ bên dưới.
Phương trình f[2−f(x)]=0 có bao nhiêu nghiệm?
Trả lời: