Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian với hệ trục tọa độ Oxyz, cho a=(2;−3;3),b=(0;2;−1),c=(3;−1;5). Tọa độ của vectơ u=2a+3b−2c là
Trong không gian Oxyz cho a=i−2k. Tọa độ a là
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Cho hàm số y=f(x)=−x3−3x2+4. Mệnh đề nào dưới đây đúng?
Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như hình dưới đây:
Khi đó giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−10;10] bằng
Cho hàm số y=x2−2x−32x2−3x+2. Khẳng định nào sau đây sai ?
Đường cong ở hình bên là đồ thị hàm số y=cx+bax+2 với a, b, c là các số thực.
Mệnh đề nào sau đây đúng?
Hệ số góc của tiếp tuyến với đồ thị hàm số y=x3+x tại điểm M(−1;0) là
Một ứng dụng của hàm số trong vật lí là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Giá trị lớn nhất của hàm số y=2x3+3x2−12x+2 trên đoạn [−1;2] là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho hàm số y=f(x) có đồ thị hàm số đạo hàm y=f′(x) như trong hình vẽ.
Số điểm cực trị của hàm số y=f(x) là
Cho tứ diện ABCD. Các điểm M,N,I lần lượt là trung điểm của AB, CD, MN và G là trọng tâm tam giác BCD.
a) MC+MD=4MN. |
|
b) IB+IC+ID=3IG. |
|
c) AD+BC=2MN. |
|
d) 2IG+IA=0. |
|
Cho hàm số y=f(x) và y=g(x) có đồ thị là các đường cong như trong hình dưới đây.
a) Hàm số y=g(x) đạt cực tiểu tại điểm x0>1. |
|
b) Hàm số y=g(x) có hai điểm cực trị. |
|
c) Đồ thị hàm số y=f(x) có điểm cực tiểu là x=1. |
|
d) Giá trị cực đại của hàm số y=f(x) là y0=1. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x)=x−1+9−x.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số y=f(x) là D=[1;9]. |
|
b) f′(5)=0. |
|
c) Hàm số y=f(x) đạt giá trị lớn nhất tại x=1. |
|
d) Tập giá trị của hàm số y=f(x) là T=[22;4]. |
|
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị k trong đẳng thức vectơ MN=k(AD+BC). (ghi kết quả dưới dạng số thập phân)
Trả lời:
Trong bài thực hành của môn huấn luyện quân sự có tình huống chiến sĩ phải bơi qua một con sông để tấn công một mục tiêu ở phía bờ bên kia sông. Biết rằng lòng sông rộng 100 m và vận tốc bơi của chiến sĩ bằng một nửa vận tốc chạy trên bờ. Nếu như dòng sông là thẳng, mục tiêu ở cách chiến sĩ 1 km theo đường chim bay thì người chiến sĩ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? (kết quả làm tròn đến hàng đơn vị)
Trả lời:
Từ một miếng tôn có hình dạng là một nửa hình tròn bán kính R=3, người ta cắt ra một miếng hình chữ nhật MNPQ như mô tả trong hình vẽ.
Diện tích lớn nhất có thể có của hình chữ nhật nêu trên là bao nhiêu (đơn vị diện tích)? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Một doanh nghiệp dự định sản xuất không quá 400 sản phẩm. Nếu doanh nghiệp sản xuất x sản phẩm (1≤x≤400) thì doanh thu nhận được khi bán hết số sản phẩm đó là F(x)=x3−1999x2+1001000x+250000 (đồng). Trong đó chi phí vận hành máy móc cho mỗi sản phẩm là G(x)=23x+1100000x (đồng). Tổng chi phí mua nguyên vật liệu là H(x)=2x3+100000x−50000 (đồng) nhưng do doanh nghiệp đó mua nguyên vật liệu với số lượng lớn nên được giảm 1% cho 200 sản phẩm đầu tiên doanh nghiệp sản xuất và giảm 2% cho sản phẩm tiếp theo. Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Trả lời:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ sau:
Phương trình f′[5−3f(x)]=0 có bao nhiêu nghiệm thực?
Trả lời: