Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đạo hàm f′(x)=x2+16. Khi đó, hàm số y=f(x) luôn
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) xác định trên R, có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?
Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=5−4x trên đoạn [−1;1]. Giá trị M−m bằng
Đồ thị hàm số y=x−15 có tiệm cận ngang là đường thẳng nào dưới đây?
Đồ thị trong hình vẽ là đồ thị của hàm số nào dưới đây?
Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Một công ty chuyên sản xuất đồ gia dụng ước tính chi phí để sản xuất x (sản phẩm) là: C(x)=2x+50 (triệu đồng), khi đó G(x)=xC(x) là chi phí sản xuất cho mỗi sản phẩm. Xem G(x) là một hàm số xác định trên [0;+∞), số tiệm cận ngang của đồ thị hàm số G(x) là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Giá trị của tham số m để đồ thị hàm số y=2x−m(m+1)x−5m có tiệm cận ngang là đường thẳng y=1 là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=x−2x2−x−1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số đã cho có 3 đường tiệm cận. |
|
b) Tiệm cận đứng của đồ thị hàm số trên là x=−2. |
|
c) y=2 là tiệm cận ngang của đồ thị hàm số đã cho. |
|
d) Tiệm cận xiên của đồ thị hàm số có hệ số góc là 1. |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Từ một tấm tôn hình chữ nhật có các kích thước là x (m), y (m) với x>1 và y>1 và diện tích bằng 4 m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m.
Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số y=f(t)=1+5e−t5000,t≥0, trong đó thời gian t (năm) được tính kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm f′(t) sẽ biểu thị tốc độ bán hàng. Sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (làm tròn kết quả tới chữ số hàng phần mười)
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Từ một miếng tôn có hình dạng là một nửa hình tròn bán kính R=3, người ta cắt ra một miếng hình chữ nhật MNPQ như mô tả trong hình vẽ.
Diện tích lớn nhất có thể có của hình chữ nhật nêu trên là bao nhiêu (đơn vị diện tích)? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Cho hàm số y=f(x) có đạo hàm trên R. Biết rằng hàm số y=f′(x) có đồ thị như hình vẽ bên dưới.
Đồ thị hàm số y=f(3x−2) cắt đường thẳng y=2x−3 tại nhiều nhất bao nhiêu điểm?
Trả lời:
Cho hàm số y=f(x) có đạo hàm trên R và thoả mãn f(−3)=f(3)=21. Biết rằng hàm số y=f′(x) là một hàm số bậc ba có đồ thị như hình vẽ.
Hàm số g(x)=[f(3−x)]2−f(3−x) đồng biến trên khoảng (a;+∞). Tìm giá trị nguyên nhỏ nhất của a.
Trả lời: