Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=2x−43x−1. Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Giá trị lớn nhất của hàm số y=2x+x8 trên đoạn [1;3] là
Đồ thị hàm số y=4x−1x+1 có đường tiệm cận ngang là đường thẳng nào dưới đây?
Đồ thị trong hình vẽ là đồ thị của hàm số nào dưới đây?
Giao điểm của đồ thị hàm số y=−x3+5x−2 với trục tung có toạ độ là
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số F(x)=60000+250x. Gọi F(x) là hàm số biểu thị chi phí trung bình (đơn vị: nghìn đồng) để sản xuất một sản phẩm, trong đó x≥0. Khi đó tiệm cận ngang của đồ thị hàm số F(x) là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Có tất cả bao nhiêu giá trị khác nhau của tham số m để đồ thị hàm số y=x2+mx+4x−1 có hai đường tiệm cận?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=f(x)=x+12x2+5x+4.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tiệm cận đứng của đồ thị hàm số là x=−1. |
|
b) x→+∞limxf(x)=2. |
|
c) x→+∞lim[f(x)−2x]=5. |
|
d) Tiệm cận xiên của đồ thị hàm số là đường thẳng y=2x+3. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Trong bài thực hành của môn huấn luyện quân sự có tình huống chiến sĩ phải bơi qua một con sông để tấn công một mục tiêu ở phía bờ bên kia sông. Biết rằng lòng sông rộng 100 m và vận tốc bơi của chiến sĩ bằng một nửa vận tốc chạy trên bờ. Nếu như dòng sông là thẳng, mục tiêu ở cách chiến sĩ 1 km theo đường chim bay thì người chiến sĩ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? (kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Cho hàm y=f(x) có bảng biến thiên như sau:
Tìm số nghiệm của phương trình 4f2(x)−9=0.
Trả lời:
Cho hàm số y=f(x) có đạo hàm trên R và thoả mãn f(−3)=f(3)=21. Biết rằng hàm số y=f′(x) là một hàm số bậc ba có đồ thị như hình vẽ.
Hàm số g(x)=[f(3−x)]2−f(3−x) đồng biến trên khoảng (a;+∞). Tìm giá trị nguyên nhỏ nhất của a.
Trả lời: