Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=2x−43x−1. Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Giá trị nhỏ nhất của hàm số y=x+1x−1 trên đoạn [0;3] là
Cho hàm số y=f(x) có x→+∞limf(x)=2, x→−∞limf(x)=+∞. Khẳng định nào sau đây đúng?
Cho hàm số y=f(x)=x3+ax2+bx+4 có đồ thị như hình vẽ.
Hàm số y=f(x) là hàm số nào dưới đây?
Biết đường thẳng y=x−2 cắt đồ thị hàm số y=x−12x+1 tại hai điểm phân biệt A và B có hoành độ xA,xB. Giá trị của biểu thức xA+xB bằng
Tiếp tuyến của đồ thị hàm số y=−x3+2x−1 tại điểm M(0;−1) có hệ số góc là
Điểm nào sau đây thuộc đồ thị hàm số (C):y=x+1x2+3x+3?
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t)=t+526t+10;f(t) được tính bằng nghìn người. Xem f(t) là một hàm số xác định trên nửa khoảng [0;+∞). Đồ thị hàm số y=f(t) có đường tiệm cận ngang là y=a. Giá trị của a là
Tất cả các giá trị thực của tham số m để hàm số y=x3+x2+mx+1 đồng biến trên (−∞;+∞) là
Số giá trị nguyên dương của tham số m để đồ thị hàm số y=x2−8x+mx−1 có 3 đường tiệm cận là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x)=x+42x+1 biết đồ thị hàm số có tiệm cận đứng và tiệm cận ngang là các đường thẳng x=x0, y=y0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tâm đối xứng của đồ thị hàm số có tọa độ là (2;−4). |
|
b) Giá trị của biểu thức S=x02+y02 lớn hơn 18. |
|
c) Gọi điểm M(x0;y0) thì trung điểm của đoạn OM có tọa độ là (2;1). |
|
d) Điểm K(−1;−4) không nằm trên đường tiệm cận đứng x=x0. |
|
Chi phí nhiên liệu của một chiếc tàu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng mỗi giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v=10 km/h thì phần thứ hai bằng 30 nghìn đồng mỗi giờ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi vận tốc v=10 (km/h) thì chi phí nguyên liệu cho phần thứ nhất trên mỗi km đường sông là 48000 đồng. |
|
b) Hàm số xác định tổng chi phí nguyên liệu trên mỗi km đường sông với vận tốc x km/h là f(x)=x480+0,03x3. |
|
c) Khi vận tốc v=30 km/h thì tổng chi phí nguyên liệu trên mỗi km đường sông là 43000 đồng. |
|
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên mỗi km đường sông nhỏ nhất là v=20 km/h. |
|
Cho hàm số f(x)=x−2−2x+3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đồng biến trên R\{2}. |
|
b) Đồ thị hàm số cắt trục tung tại điểm M(0;2−3). |
|
c) Đồ thị hàm số y=f(x) cắt đường thẳng y=x−2m tại hai điểm phân biệt khi [m>3m<1. |
|
d) Đồ thị hàm số y=f(x) cắt đường thẳng y=x+2 tại hai điểm phân biệt M và N. Biết I là trung điểm của đoạn thẳng MN. Khi đó hoành độ của điểm I là 1. |
|
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Một cốc chứa 20 ml dung dịch KOH (Potassium Hydroxide) với nồng độ 100 mg/ml và một bình chứa dung dịch KOH khác với nồng độ 10 mg/ml. Lấy x (ml) ở bình trộn vào cốc ta được dung dịch KOH có nồng độ C(x). Coi C(x) là hàm số xác định với x≥0. Khi x∈[5;15], nồng độ của dung dịch KOH đạt giá trị lớn nhất bằng bao nhiêu mg/ml?
Trả lời: mg/ml
Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0<x<2000), tổng số tiền doanh nghiệp thu được là F(x)=2000x−x2 (chục nghìn đồng) và tổng chi phí doanh nghiệp bỏ ra là G(x)=x2+1440x+50 (chục nghìn đồng). Công ty cũng phải chịu mức thuế phụ thu cho một đơn vị sản phẩm bán được là t (chục nghìn đồng), (0<x<300). Mức thuế phụ thu t (trên một đơn vị sản phẩm) là bao nhiêu nghìn đồng sao cho nhà nước thu được số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng thu được lợi nhuận nhiều nhất theo đúng mức thuế phụ thu đó? (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ sau:
Phương trình f′[5−3f(x)]=0 có bao nhiêu nghiệm thực?
Trả lời:
Cho hàm số y=f′(x) có đồ thị như hình vẽ.
Biết rằng hàm số y=f(2−x) đồng biến trên khoảng (a;+∞). Giá trị nguyên nhỏ nhất của a là bao nhiêu?
Trả lời: