Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=2024x−x2 nghịch biến trên khoảng nào sau đây?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
Điểm cực đại của hàm số là
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Hàm số đồng biến trên khoảng nào sau đây?
Giá trị nhỏ nhất của hàm số y=f(x)=x3+3x trên đoạn [−1;2] bằng
Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=x+12x−1 có phương trình lần lượt là
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?
Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?
Hệ số góc của tiếp tuyến với đồ thị hàm số y=x3+x tại điểm M(−1;0) là
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Một nhà máy sản xuất linh kiện điện tử thống kê được rằng trung bình một tổ sản xuất với x người thì số sản phẩm sản xuất được trong một thời gian cố định được tính bẳng công thức P(x)=4x+255000x. Xem y=P(x) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Tất cả các giá trị thực của tham số m để hàm số y=x3+x2+mx+1 đồng biến trên (−∞;+∞) là
Số giá trị nguyên dương của tham số m để đồ thị hàm số y=x2−8x+mx−1 có 3 đường tiệm cận là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=x−2x+2 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Đồ thị (C) có đường tiệm cận đứng x=2. |
|
b) Đồ thị (C) nhận điểm I(1;1) làm tâm đối xứng. |
|
c) Đường thẳng đường thẳng d:y=x−1 cắt đồ thị (C) tại 2 điểm phân biệt có độ dài bằng 45. |
|
d) Gọi M là điểm bất kì thuộc đồ thị (C). Khi đó tổng khoảng cách từ điểm M đến hai đường tiệm cận của đồ thị (C) đạt giá trị nhỏ nhất bằng 4. |
|
Một vật chuyển động thẳng được cho bởi phương trình: s(t)=−31t3+4t2+9t, trong đó t tính bằng giây và s tính bằng mét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vận tốc của vật tại các thời điểm t=3 giây là v(3)=1 m/s. |
|
b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật đứng yên là 162 m. |
|
c) Gia tốc của vật tại thời điểm t=3 giây là a(3)=2 m/s2. |
|
d) Trong 9 giây đầu tiên, khoảng thời gian (giây) vật tăng tốc là t∈[0;4]. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Một phần lát cắt của dãy núi có độ cao tính bằng mét được mô tả bởi hàm số y=h(x)=−13200001x3+35209x2−4481x+840 với 0≤x≤2000. Biết đỉnh của lát cắt dãy núi nằm ở độ cao h (m) thuộc đoạn [1000;2000]. Tính h. (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Cho hàm y=f(x) có bảng biến thiên như sau:
Tìm số nghiệm của phương trình 4f2(x)−9=0.
Trả lời:
Cho hàm số y=f′(x) có đồ thị như hình vẽ.
Biết rằng hàm số y=f(2−x) đồng biến trên khoảng (a;+∞). Giá trị nguyên nhỏ nhất của a là bao nhiêu?
Trả lời: