Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì II (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho biết hàm số f(x) có đạo hàm là f′(x) và có một nguyên hàm là F(x). Nguyên hàm I=∫[2f(x)+f′(x)+1]dx bằng
Biết ∫f(x)dx=ln55x+3x+C, khi đó f(x) bằng
Trên khoảng (0;+∞), họ nguyên hàm của hàm số f(x)=x34 là
Giả sử F(x) là một nguyên hàm của hàm số f(x) trên đoạn [0;1]. Biết 0∫1f(x)dx=1 và F(0)=2, giá trị của F(1) bằng
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (α) đi qua điểm A(2;1;1) và vuông góc với trục tung là
Trong không gian với hệ trục tọa độ Oxyz. Bán kính r của mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α):2x−2y−z+3=0 là
Mặt phẳng (α):2x−5y−z+1=0 có một vectơ pháp tuyến là
Nguyên hàm F(x) của hàm số f(x)=3x2 trên R thoả mãn điều kiện F(1)=−1. Hàm số F(x) là
Nếu 0∫3π[sinx−3f(x)]dx=6 thì 0∫3πf(x)dx bằng
Gọi a,b là các số nguyên dương nhỏ nhất sao cho 0∫14−x2dx=blna. Giá trị của a+b bằng
Trong không gian Oxyz, cho hai điểm A(−2;3;2) và B(2;1;0). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;−3), đồng thời vuông góc với hai mặt phẳng (Q):x+y+3z=0, (R):2x−y+z=0 là
Cho hàm số y=f(x)=ax3+bx2+cx+d(a,b,c,d∈R) có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y=4 tại điểm có hoành độ âm và đồ thị hàm số y=f′(x) cho bởi hình vẽ dưới đây:
a) Hàm số y=f(x) có điểm cực tiểu tại x=0. |
|
b) Hàm số y=f(x) nghịch biến trên khoảng (−1;1) |
|
c) Hàm số y=f(x)=x3−3x−2. |
|
d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng H giới hạn bởi đồ thị (C) và trục hoành khi quay xung quanh trục Ox là 35729π |
|
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;3;−1),B(4;1;0),C(4;7;3).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vectơ n=[AB,AC] là một vectơ pháp tuyến của mặt phẳng ABC. |
|
b) Độ dài các cạnh tam giác ABC lần lượt là AB=3,AC=6,BC=4. |
|
c) Tọa độ chân đường phân giác của BAC xuống BC là E(4;3;1). |
|
d) Mặt phẳng đi qua điểm A, tâm đường tròn nội tiếp tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình (P):x−4y−z−9=0. |
|
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v1(t)=4t m/s, trong đó thời gian t tính bằng giây. Sau khi chuyển động được 10 giây thì ô tô gặp chuớng ngại vật và người tài xế phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với vận tốc v2(t) và gia tốc là a=−3 m/s2 cho đến khi dừng hẳn.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường ô tô chuyển động nhanh dần đều là 200 m. |
|
b) Vận tốc của ô tô tại thời điểm người tài xế phanh gấp là 40 m/s. |
|
c) Thời gian từ lúc ô tô giảm tốc độ cho đến khi dừng hẳn là 40 giây. |
|
d) Tổng quãng đường ô tô chuyển động từ lúc xuất phát đến khi dừng hẳn là khoảng 650,7 m. |
|
Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu là 25 m/s, gia tốc trọng trường là 9,8 m/s2. Quãng đường viên đạn đi được từ lúc bắn cho đến khi chạm đất là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho h′(t)=3at2+bt (m3/s) và ban đầu bể không có nước. Sau 5 giây thì thể tích nước trong bể là 150 m3. Sau 10 giây thì thể tích nước trong bể là 1100 m3. Thể tích nước trong bể sau khi bơm được 20 giây là bao nhiêu m3? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v1(t)=2t (m/s). Đi được 12 giây, người lái xe gặp chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a=−12( m/s2). Tính quãng đường ô tô đi được từ lúc bắt đầu chuyển động đến khi dừng hẳn.
Trả lời:
Trong không gian Oxyz, cho ba điểm A(2;0;0),B(0;1;0),C(0;0;−3). Gọi H là trực tâm tam giác ABC. Độ dài OH có dạng ba (là phân số tối giản có mẫu dương). Tính T=a+b.
Trả lời:
Một công ty có ý định thiết kế một logo hình vuông có độ dài nửa đường chéo bằng 4. Biều tượng 4 chiếc lá (được tô màu) được tạo thành bởi các đường cong đối xứng với nhau qua tâm của hình vuông và qua các đường chéo.
Một trong số các đường cong ở nửa bên phải của logo là một phần của đồ thị hàm số bậc ba dạng y=ax3+bx2−x với hệ số a<0. Để kỷ niệm ngày thành lập, công ty thiết kế để tỉ số diện tích được tô màu so với phần không được tô màu bằng 32. Tổng a+b bằng
Trả lời:
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ:3x−1=−2y+2=1z−3 và mặt phẳng (P):x+y−z−1=0. Mặt phẳng (Q) đối xứng với (P) qua Δ có phương trình là ax+by+cz+d=0, trong đó a, b, c, d nguyên dương; a và b nguyên tố cùng nhau. Tính a+b+c+d.
Trả lời: