Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì II (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho biết hàm số f(x) có đạo hàm là f′(x) và có một nguyên hàm là F(x). Nguyên hàm I=∫[2f(x)+f′(x)+1]dx bằng
Họ nguyên hàm của hàm số f(x)=ex+x là
Cho hàm số f(x)=x3−2x. Khẳng định nào sau đây đúng?
Giả sử F(x) là một nguyên hàm của hàm số f(x) trên đoạn [0;1]. Biết 0∫1f(x)dx=1 và F(0)=2, giá trị của F(1) bằng
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (α) đi qua điểm A(2;1;1) và vuông góc với trục tung là
Trong không gian Oxyz, cho điểm M0(x0;y0;z0) và mặt phẳng (α):Ax+By+Cz+D=0. Khoảng cách từ điểm M0 đến mặt phẳng (α) bằng
Trong không gian Oxyz, cho mặt phẳng (P):2x−y+3=0. Vectơ nào sau đây không là vectơ pháp tuyến của mặt phẳng (P)?
Cho F(x) là một nguyên hàm của hàm số f(x)=2x+4 và thỏa mãn F(1)=0. Giá trị của F(3) bằng
Cho hàm số y=f(x) có đạo hàm f′(x)=cosx+1,∀x∈R. Biết 0∫2πf(x)dx=8π2+1, khi đó f(2π) bằng
Tích phân I=1∫2x+1−x1dx bằng
Trong không gian Oxyz, cho hai điểm A(0;2;−3) và B(4;−4;1). Gọi M là trung điểm của AB. Phương trình mặt phẳng trung trực của OM là
Trong không gian Oxyz, cho đường thẳng d:⎩⎨⎧x=ty=1−tz=2(t∈R). Mặt phẳng đi qua O và chứa d có phương trình là
Cho hàm số y=f(x)=ax3+bx2+cx+d(a,b,c,d∈R) có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y=4 tại điểm có hoành độ âm và đồ thị hàm số y=f′(x) cho bởi hình vẽ dưới đây:
a) Hàm số y=f(x) có điểm cực tiểu tại x=0. |
|
b) Hàm số y=f(x) nghịch biến trên khoảng (−1;1) |
|
c) Hàm số y=f(x)=x3−3x−2. |
|
d) Thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng H giới hạn bởi đồ thị (C) và trục hoành khi quay xung quanh trục Ox là 35729π |
|
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;3;−1),B(4;1;0),C(4;7;3).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vectơ n=[AB,AC] là một vectơ pháp tuyến của mặt phẳng ABC. |
|
b) Độ dài các cạnh tam giác ABC lần lượt là AB=3,AC=6,BC=4. |
|
c) Tọa độ chân đường phân giác của BAC xuống BC là E(4;3;1). |
|
d) Mặt phẳng đi qua điểm A, tâm đường tròn nội tiếp tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình (P):x−4y−z−9=0. |
|
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v1(t)=4t m/s, trong đó thời gian t tính bằng giây. Sau khi chuyển động được 10 giây thì ô tô gặp chuớng ngại vật và người tài xế phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với vận tốc v2(t) và gia tốc là a=−3 m/s2 cho đến khi dừng hẳn.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường ô tô chuyển động nhanh dần đều là 200 m. |
|
b) Vận tốc của ô tô tại thời điểm người tài xế phanh gấp là 40 m/s. |
|
c) Thời gian từ lúc ô tô giảm tốc độ cho đến khi dừng hẳn là 40 giây. |
|
d) Tổng quãng đường ô tô chuyển động từ lúc xuất phát đến khi dừng hẳn là khoảng 650,7 m. |
|
Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho h′(t)=3at2+bt (m3/s) và ban đầu bể không có nước. Sau 5 giây thì thể tích nước trong bể là 150 m3. Sau 10 giây thì thể tích nước trong bể là 1100 m3. Thể tích nước trong bể sau khi bơm được 20 giây là bao nhiêu m3? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu là 25 m/s, gia tốc trọng trường là 9,8 m/s2. Quãng đường viên đạn đi được từ lúc bắn cho đến khi chạm đất là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc a(t)=6−2t (m/s2), trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quảng đường ô tô đi được từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?
Trả lời:
Trong không gian Oxyz, cho ba điểm A(2;0;0),B(0;1;0),C(0;0;−3). Gọi H là trực tâm tam giác ABC. Độ dài OH có dạng ba (là phân số tối giản có mẫu dương). Tính T=a+b.
Trả lời:
Một mảnh vườn hình tròn tâm O bán kính 6 m. Người ta cần trồng cây trên dải đất rộng 6 m nhận O làm tâm đối xứng, biết kinh phí trồng cây là 70 nghìn đồng/m2. Cần bao nhiêu tiền để trồng cây trên dải đất đó (số tiền được làm tròn đến hàng đơn vị)?
Trả lời: nghìn đồng
Trong không gian với hệ trục tọa độ Oxyz. Phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1),B(0;2;2) đồng thời cắt các tia Ox,Oy lần lượt tại các điểm M,N (M,N không trùng với gốc tọa độ O) thỏa mãn OM=2ON là ax+by+cz+d=0. Tính T=a+b+c+d.
Trả lời: