Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hình lập phương ABCD.A′B′C′D′. Vectơ nào sau đây có điểm đầu và điểm cuối là đỉnh của hình lập phương ABCD.A′B′C′D′ và bằng AD?
Trong không gian Oxyz với i,j,k lần lượt là vectơ đơn vị của các trục Ox,Oy,Oz, cho a=2i+k−3j. Tọa độ của a là
Điểm cực tiểu của hàm số y=x3−12x+1 là
Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Giá trị lớn nhất của hàm số y=−x4+4x2 trên đoạn [−1;2] bằng
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?
Điểm nào sau đây thuộc đồ thị của hàm số y=x4−3x2−5?
Đồ thị hàm số y=3x2+x+2 và trục tung có bao nhiêu điểm chung?
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số F(x)=60000+250x. Gọi F(x) là hàm số biểu thị chi phí trung bình (đơn vị: nghìn đồng) để sản xuất một sản phẩm (x≥0), khi đó tiệm cận ngang của đồ thị hàm số bằng
Cho hình lập phương ABCD.EFGH có cạnh bằng 3. Giá trị của AB.EG là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Đặt x=AB;y=AC;z=AD. Biểu diễn AG theo x;y;z ta được
Cho hình hộp ABCD.A′B′C′D′. Gọi I và K lần lượt là tâm của hình bình hành ABB′A′ và BCC′B′.
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) IK=21AC. |
|
b) IK=21A′C′. |
|
c) BD+2IK=BC. |
|
d) Ba vectơ BD;IK;B′C′ không đồng phẳng. |
|
Cho hàm số y=f(x)=(4−x2)2+1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đã cho có 3 điểm cực trị. |
|
b) Tập giá trị của hàm số là R. |
|
c) Trên đoạn [−2;1], giá trị nhỏ nhất của hàm số là 1. |
|
d) Trên khoảng [0;+∞), giá trị lớn nhất của hàm số là 17. |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây:
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Hàm số nghịch biến trên khoảng (0;1). |
|
b) Giá trị cực đại của hàm số là y=2. |
|
c) Phương trình y=m luôn có nghiệm với mọi m. |
|
d) Đồ thị hàm số đã cho có 2 đường tiệm cận. |
|
Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi hàm số có công thức c(t)=t2+1t (mg/L).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Nồng độ thuốc trong máu của bện nhân sau 3 giờ là c(3)=103 (mg/L). |
|
b) Đạo hàm của hàm số c(t)=t2+1t là c′(t)=(t2+1)21−t2. |
|
c) Nồng độ thuốc trong máu bệnh nhân tăng trong khoảng t∈(0;2). |
|
d) Nồng độ thuốc trong máu của bệnh nhân cao nhất khi t=21. |
|
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 100∘ và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn của hợp lực của ba lực trên. (làm tròn đến hàng đơn vị)
Trả lời:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với SA=4,AB=1,AD=2 và SA⊥(ABCD). Gọi M là trung điểm của AB. Tính góc giữa hai vectơ SC và DM. (làm tròn đến đơn vị độ)
Trả lời: ∘
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời: mg
Cho hàm số y=f(x) có bảng biến thiên như sau:
Phương trình ∣f(x)∣=2 có bao nhiêu nghiệm phân biệt?
Trả lời:
Từ một tấm tôn hình chữ nhật có các kích thước là x(m), y(m) với x>1và y>1 và diện tích bằng 4m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Có bao nhiêu giá trị của tham số m để đồ thị hàm số y=f(x)=31x3−21mx2+x−2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền là 14?
Trả lời: