Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào không là mệnh đề?
Cho A, B, C là ba tập hợp được minh họa bằng sơ đồ Ven như hình vẽ:
Phần gạch sọc trong hình vẽ trên là tập hợp nào sau đây?
Miền nghiệm của bất phương trình 3x+2(y+3)≥4(x+1)−y+3 là nửa mặt phẳng chứa điểm nào sau đây?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây sai?
Cho tam giác ABC với BC=a,AC=b,AB=c, bán kính đường tròn ngoại tiếp R. Khẳng định nào sau đây đúng?
Cho tam giác ABC thoả mãn b2+c2−a2=bc, trong đó a, b và c là độ dài ba cạnh. Số đo góc A bằng
Cho hai tập hợp A={x∈Z2x2−3x+1=0},B={x∈N3x+2<9}. Khi đó A∩B là
Miền tam giác ABC kể cả ba cạnh (phần tô màu) trong hình vẽ là miền nghiệm của hệ bất phương trình nào trong bốn hệ bất phương trình dưới đây?
Cho tanα−cotα=3. Giá trị của biểu thức A=tan2α+cot2α là
Cho biết cosα=−32. Giá trị của P=2cotα+tanαcotα+3tanα bằng
Cho ba tập hợp CRM=(−∞;3),CRN=(−∞;−3)∪(3;+∞) và CRP=(−2;3].
(Nhấp vào ô màu vàng để chọn đúng / sai)a) N=(−3;3). |
|
b) P=(−∞;−2]∪(3;+∞). |
|
c) M∩N=∅. |
|
d) (M∩N)∪P=(−∞;−2]∪[3;+∞). |
|
Một cửa hàng có kế hoạch nhập về 110 chiếc xe mô tô gồm hai loại A và B để bán. Mỗi chiếc xe loại A có giá 30 triệu đồng và mỗi chiếc xe loại B có giá 50 triệu đồng. Gọi x, y lần lượt là số xe loại A và loại B cần nhập.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền nhập xe là 3x+5y triệu đồng. |
|
b) Số tiền dùng để nhập xe không quá 4 tỉ đồng khi 3x+5y≤400. |
|
c) Cửa hàng nhập 73 xe loại A và 37 xe loại B thì số tiền dùng để nhập xe vượt quá 4 tỉ đồng |
|
d) Cửa hàng nhập 78 xe loại A và 32 xe loại B thì số tiền dùng để nhập xe vượt quá 4 tỉ đồng. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=53 với 90∘<α<180∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0. |
|
b) cos2α=2516. |
|
c) cosα=54. |
|
d) tanα=43. |
|
Bạn Khương bản Mộc thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Trong tháng 3 đó có bao nhiêu ngày không có mưa và không có sương mù?
Trả lời:
Cho bất phương trình x+3y−12≥0. Có bao nhiêu số nguyên m để cặp số (m2;m2+2m−2) không phải là nghiệm của bất phương trình đã cho.
Trả lời:
Một người thợ mộc làm hai loại sản phẩm là bàn và ghế. Mỗi cái bàn khi bán lãi 150 nghìn đồng, mỗi cái ghế khi bán lãi 50 nghìn đồng. Người thợ mộc có thể làm 40 giờ/tuần và tốn 6 giờ để làm một cái bàn, 3 giờ để làm một cái ghế. Khách hàng yêu cầu người thợ mộc làm số ghế ít nhất là gấp ba lần số bàn. Một cái bàn chiếm chỗ bằng 4 cái ghế và ta có phòng để được nhiều nhất 4 cái bàn. Người thợ mộc phải sản xuất x cái bàn và y cái ghế trong ba tuần để số tiền lãi thu về là lớn nhất. Tính x+y.
Trả lời:
Một ô tô muốn đi từ A đến C nhưng giữa A và C là một ngọn núi cao nên ô tô phải đi thành hai đoạn từ A đến B rồi từ B đến C, các đoạn đường tạo thành tam giác ABC có AB=15 km, BC=20 km và ABC=120∘. Giả sử ô tô chạy 5 km tốn một lít xăng, giá một lít xăng là 20 000 đồng.
Nếu người ta làm một đoạn đường hầm xuyên núi chạy thẳng từ A đến C, khi đó ô tô chạy trên con đường này sẽ tiết kiệm được số tiền là bao nhiêu nghìn đồng so với chạy trên đường cũ? (Làm tròn kết quả đến hàng phần mười)
Trả lời:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR có dạng a+bc, với a,b,c∈N và c là số nguyên tố. Tính giá trị của biểu thức T=a+b+c.
Trả lời:
Cho biểu thức T=3x−2y−4 với x và y thỏa mãn hệ bất phương trình: ⎩⎨⎧x−y−1≤0x+4y+9≥0x−2y+3≥0. Biết T đạt giá trị nhỏ nhất khi x=x0 và y=y0. Tính x02+y02.
Trả lời: